133 research outputs found

    Ferromagnetic bubble clusters in Y0.67_{0.67}Ca0.33_{0.33}MnO3_3 thin films

    Get PDF
    We studied the ferromagnetic topology in a Y0.67_{0.67}Ca0.33_{0.33}MnO3_3 thin film with a combination of magnetic force microscopy and magnetization measurements. Our results show that the spin-glass like behavior, reported previously for this system, could be attributed to frustrated interfaces of the ferromagnetic clusters embedded in a non-ferromagnetic matrix. We found temperature dependent changes of the magnetic topology at low temperatures, which suggests a non-static Mn3+^{3+}/Mn4+^{4+} ratio

    Suppression of matching field effects by splay and pinning energy dispersion in YBa_2Cu_3O_7 with columnar defects

    Full text link
    We report measurements of the irreversible magnetization M_i of a large number of YBa_2Cu_3O_7 single crystals with columnar defects (CD). Some of them exhibit a maximum in M_i when the density of vortices equals the density of tracks, at temperatures above 40K. We show that the observation of these matching field effects is constrained to those crystals where the orientational and pinning energy dispersion of the CD system lies below a certain threshold. The amount of such dispersion is determined by the mass and energy of the irradiation ions, and by the crystal thickness. Time relaxation measurements show that the matching effects are associated with a reduction of the creep rate, and occur deep into the collective pinning regime.Comment: 7 pages, 5 figures, submitted to Phys. Rev.

    Direct measurements of the penetration depth in a superconducting film using magnetic force microscopy

    Get PDF
    We report the local measurements of the magnetic penetration depth λ\lambda in a superconducting Nb film using magnetic force microscopy (MFM). We developed a method for quantitative extraction of the penetration depth from single-parameter simultaneous fits to the lateral and height profiles of the MFM signal, and demonstrate that the obtained value is in excellent agreement with that obtained from the bulk magnetization measurements.Comment: 3 pages, 4 figures, submitted to APL on 08/18/0

    Magnetization Relaxation via Quantum and Classical Vortex Motion in a Bose Glass Superconductor

    Full text link
    I show that in Bose Glass superconductor with high jcj_c and at low TT the magnetization relaxation (S), dominated by quantum tunneling, is jc\propto{\sqrt j_c}, which crosses over to the conventional classical rate T/jc\propto T/j_c at higher TT and lower jcj_c, with the crossover Tjc3/2T^*\sim j_c^{3/2}. I argue that due to interactions between flux lines there exist three relaxation regimes, depending on whether BBϕBB_\phi, corresponding to Strongly-pinned Bose Glass (SBG) with large jc2j_{c2}, Mott Insulator (MI) with vanishing S, and Weakly-pinned Bose Glass (WBG) characterized by small jc1j_{c1}. I discuss the effects of interactions on jcj_c and focus attention on the recent experiment which is consistently described by the theory.Comment: 4 pages, self-unpacking uuencoded compressed postscript file with figures already inside text; to appear in Phys. Rev. Lett.(1995

    Depinning of a superfluid vortex line by Kelvin waves

    Full text link
    We measure the interaction of a single superfluid vortex with surface irregularities. While vortex pinning in superconductors usually becomes weaker at higher temperatures, we find the opposite behavior. The pinning steadily increases throughout our measurement range, from 0.15Tc to over 0.5Tc. We also find that moving the other end of the vortex decreases the pinning, so we propose Kelvin waves along the vortex as a depinning mechanism.Comment: 5 figures; substantial revision including 2 new figure

    Angular dependent vortex pinning mechanisms in YBCO coated conductors and thin films

    Full text link
    We present a comparative study of the angular dependent critical current density in YBa2Cu3O7 films deposited on IBAD MgO and on single crystal MgO and SrTiO3 substrates. We identify three angular regimes where pinning is dominated by different types of correlated and uncorrelated defects. We show that those regimes are present in all cases, indicating that the pinning mechanisms are the same, but their extension and characteristics are sample dependent, reflecting the quantitative differences in texture and defect density. In particular, the more defective nature of the films on IBAD turns into an advantage as it results in stronger vortex pinning, demonstrating that the critical current density of the films on single crystals is not an upper limit for the performance of the IBAD coated conductors.Comment: 14 pages, 3 figures. Submitted to AP

    Phase Diagram for Splay Glass Superconductivity

    Full text link
    Localization of flux lines to splayed columnar pins is studied. A sine-Gordon type renormalization group study reveals the existence of a Splay glass phase and yields an analytic form for the transition temperature into the glass phase. As an independent test, the IVI-V characteristics are determined via a Molecular Dynamics code. The glass transition temperature supports the RG results convincingly. The full phase diagram of the model is constructed.Comment: 14 pages, uuencoded compressed tar file with 3 postscript figure

    Flux pinning properties of superconductors with an array of blind holes

    Full text link
    We performed ac-susceptibility measurements to explore the vortex dynamics and the flux pinning properties of superconducting Pb films with an array of micro-holes (antidots) and non-fully perforated holes (blind holes). A lower ac-shielding together with a smaller extension of the linear regime for the lattice of blind holes indicates that these centers provide a weaker pinning potential than antidots. Moreover, we found that the maximum number of flux quanta trapped by a pinning site, i.e. the saturation number ns, is lower for the blind hole array.Comment: 6 figures, 6 page

    The Feasibility of Thermal Imaging as a Future Portal Imaging Device for Therapeutic Ultrasound.

    Get PDF
    This technical note describes a prototype thermally based portal imaging device that allows mapping of energy deposition on the surface of a tissue mimicking material in a focused ultrasound surgery (FUS) beam by using an infrared camera to measure the temperature change on that surface. The aim of the work is to explore the feasibility of designing and building a system suitable for rapid quality assurance (QA) for use with both ultrasound- and magnetic resonance (MR) imaging-guided clinical therapy ultrasound systems. The prototype was tested using an MR-guided Sonalleve FUS system (with the treatment couch outside the magnet bore). The system's effective thermal noise was 0.02°C, and temperature changes as low as 0.1°C were easily quantifiable. The advantages and drawbacks of thermal imaging for QA are presented through analysis of the results of an experimental session
    corecore