3,616 research outputs found

    Evaluation of advanced optimisation methods for estimating Mixed Logit models

    No full text
    The performances of different simulation-based estimation techniques for mixed logit modeling are evaluated. A quasi-Monte Carlo method (modified Latin hypercube sampling) is compared with a Monte Carlo algorithm with dynamic accuracy. The classic Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm line-search approach and trust region methods, which have proved to be extremely powerful in nonlinear programming, are also compared. Numerical tests are performed on two real data sets: stated preference data for parking type collected in the United Kingdom, and revealed preference data for mode choice collected as part of a German travel diary survey. Several criteria are used to evaluate the approximation quality of the log likelihood function and the accuracy of the results and the associated estimation runtime. Results suggest that the trust region approach outperforms the BFGS approach and that Monte Carlo methods remain competitive with quasi-Monte Carlo methods in high-dimensional problems, especially when an adaptive optimization algorithm is used

    Kink Localization under Asymmetric Double-Well Potential

    Full text link
    We study diffuse phase interfaces under asymmetric double-well potential energies with degenerate minima and demonstrate that the limiting sharp profile, for small interface energy cost, on a finite space interval is in general not symmetric and its position depends exclusively on the second derivatives of the potential energy at the two minima (phases). We discuss an application of the general result to porous media in the regime of solid-fluid segregation under an applied pressure and describe the interface between a fluid-rich and a fluid-poor phase. Asymmetric double-well potential energies are also relevant in a very different field of physics as that of Brownian motors. An intriguing analogy between our result and the direction of the dc soliton current in asymmetric substrate driven Brownian motors is pointed out

    New aspects of microwave properties of Nb in the mixed state

    Full text link
    We present a study of the frequency dependence of the vortex dynamics in a conventional superconductor. We have employed a swept-frequency, Corbino-disk technique to investigate the temperature (3.6K-Tc) and high-field (from Hc2/2 to Hc2) microwave complex resistivity in Nb thin (20-40 nm) films as a function of the frequency (1-20 GHz). We have found several previously unnoticed features: (i) a field-dependent depinning frequency in the GHz range; (ii) deviations from the accepted frequency dependence, that can be ascribed to some kind of vortex creep; (iii) the presence of switching phenomena, reminiscent of vortex instabilities. We discuss the possible origin of the features here reported.Comment: 5 pages, 3 figures, presented at VORTEX VI Conference, to appear on Physica

    Superconducting nanowire quantum interference device based on Nb ultrathin films deposited on self-assembled porous Si templates

    Full text link
    Magnetoresistance oscillations were observed on networks of superconducting ultrathin Nb nanowires presenting evidences of either thermal or quantum activated phase slips. The magnetic transport data, discussed in the framework of different scenarios, reveal that the system behaves coherently in the temperature range where the contribution of the fluctuations is important.Comment: accepted for publication on Nanotechnolog

    Interface Transparency of Nb/Pd Layered Systems

    Get PDF
    We have investigated, in the framework of proximity effect theory, the interface transparency T of superconducting/normal metal layered systems which consist of Nb and high paramagnetic Pd deposited by dc magnetron sputtering. The obtained T value is relatively high, as expected by theoretical arguments. This leads to a large value of the ratio dscr/ξsd_{s}^{cr}/ \xi_{s} although Pd does not exhibit any magnetic ordering.Comment: To be published on Eur. Phys. J.

    Robustness of the 0π0 -\pi transition against compositional and structural ageing in S/F/S heterostructures

    Full text link
    We have studied the temperature induced 0π0 -\pi thermodynamic transition in Nb/PdNi/Nb Superconductor/Ferromagnetic/Superconductor (SFS) heterostructures by microwave measurements of the superfluid density. We have observed a shift in the transition temperature with the ageing of the heterostructures, suggesting that structural and/or chemical changes took place. Motivated by the electrodynamics findings, we have extensively studied the local structural properties of the samples by means of X-ray Absorption Spectroscopy (XAS) technique, and the compositional profile by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). We found that the samples have indeed changed their properties, in particular for what concerns the interfaces and the composition of the ferromagnetic alloy layer. The structural and compositional data are consistent with the shift of the 0π0-\pi transition toward the behaviour of heterostructures with different F layers. An important emerging indication to the physics of SFS is the weak relevance of the ideality of the interfaces: even in aged samples, with less-than-ideal interfaces, the temperature-induced 0π0-\pi transition is still detectable albeit at a different critical F thickness.Comment: 11 pages, 9 figures, accepted for publication on Phys. Rev. B, http://journals.aps.org/prb

    Microwave properties of Nb/PdNi/Nb trilayers. Observation of flux flow in excess of Bardeen-Stephen theory

    Full text link
    We combine wideband (1-20 GHz) Corbino disk and dielectric resonator (8.2 GHz) techniques to study the microwave properties in Nb/PdNi/Nb trilayers, grown by UHV dc magnetron sputtering, composed by Nb layers of nominal thickness dSd_S=15 nm, and a ferromagnetic PdNi layer of thickness dFd_F= 1, 2, 8 and 9 nm. We focus on the vortex state. Magnetic fields up to Hc2H_{c2} were applied. The microwave resistivity at fixed H/Hc2H/H_{c2} increases with dFd_F, eventually exceeding the Bardeen Stephen flux flow value.Comment: 6 pages. Submitted to Journal of Superconductivity and Novel Magnetis

    Nonlinear current-voltage characteristics due to quantum tunneling of phase slips in superconducting Nb nanowire networks

    Get PDF
    We report on the transport properties of an array of N about 30 interconnected Nb nanowires, grown by sputtering on robust porous Si substrates. The analyzed system exhibits a broad resistive transition in zero magnetic field, H, and highly nonlinear V(I) characteristics as a function of H which can be both consistently described by quantum tunneling of phase slips.Comment: accepted for publication on Appl. Phys. Let

    Competitive nucleation in reversible probabilistic cellular automata

    Get PDF
    The problem of competitive nucleation in the framework of probabilistic cellular automata is studied from the dynamical point of view. The dependence of the metastability scenario on the self-interaction is discussed.An intermediate metastable phase, made of two flip-flopping chessboard configurations, shows up depending on the ratio between the magnetic field and the self-interaction. A behavior similar to the one of the stochastic Blume-Capel model with Glauber dynamics is found

    The Application of Barocaloric Solid-State Cooling in the Cold Food Chain for Carbon Footprint Reduction

    Get PDF
    In this paper, the application of solid-state cooling based on the barocaloric effect in the cold food supply chain is investigated. Barocaloric solid-state technology is applied to the final links of the cold food supply chain regarding the steps of retail and domestic conservation. In this context, effective barocaloric cooling entails the refrigeration of food at 5 °C (273 K) and as such is a promising cooling technology due to its energy efficiency and environmental friendliness. The categories of food involved in this investigation are meat and fresh food products like soft cheese, yogurt, and milk. The energy performance of the barocaloric system is analyzed and compared with a commercial vapor compression refrigerator of a similar size, both operating using R600a under the same working conditions. Based on the results of this comparison, it is concluded that barocaloric cooling is a favorable technology for application in the final links of the cold food supply chain if the system operates in an ABR cycle at frequencies between 1.25 and 1.50 Hz with a regenerator comprising acetoxy silicone rubber as the solid-state refrigerant and a 50%EG–50% water mixture as the heat transfer fluid flowing at an optimal velocity of 0.15 m s−1. Thus, an appropriate tradeoff between the temperature span, cooling power, and coefficient of performance is guaranteed. Under these conditions, the barocaloric system outperforms the domestic vapor compression cooler operating using R600a
    corecore