3,616 research outputs found
Evaluation of advanced optimisation methods for estimating Mixed Logit models
The performances of different simulation-based estimation techniques for mixed logit modeling are evaluated. A quasi-Monte Carlo method (modified Latin hypercube sampling) is compared with a Monte Carlo algorithm with dynamic accuracy. The classic Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm line-search approach and trust region methods, which have proved to be extremely powerful in nonlinear programming, are also compared. Numerical tests are performed on two real data sets: stated preference data for parking type collected in the United Kingdom, and revealed preference data for mode choice collected as part of a German travel diary survey. Several criteria are used to evaluate the approximation quality of the log likelihood function and the accuracy of the results and the associated estimation runtime. Results suggest that the trust region approach outperforms the BFGS approach and that Monte Carlo methods remain competitive with quasi-Monte Carlo methods in high-dimensional problems, especially when an adaptive optimization algorithm is used
Kink Localization under Asymmetric Double-Well Potential
We study diffuse phase interfaces under asymmetric double-well potential
energies with degenerate minima and demonstrate that the limiting sharp
profile, for small interface energy cost, on a finite space interval is in
general not symmetric and its position depends exclusively on the second
derivatives of the potential energy at the two minima (phases). We discuss an
application of the general result to porous media in the regime of solid-fluid
segregation under an applied pressure and describe the interface between a
fluid-rich and a fluid-poor phase. Asymmetric double-well potential energies
are also relevant in a very different field of physics as that of Brownian
motors. An intriguing analogy between our result and the direction of the dc
soliton current in asymmetric substrate driven Brownian motors is pointed out
New aspects of microwave properties of Nb in the mixed state
We present a study of the frequency dependence of the vortex dynamics in a
conventional superconductor. We have employed a swept-frequency, Corbino-disk
technique to investigate the temperature (3.6K-Tc) and high-field (from Hc2/2
to Hc2) microwave complex resistivity in Nb thin (20-40 nm) films as a function
of the frequency (1-20 GHz). We have found several previously unnoticed
features: (i) a field-dependent depinning frequency in the GHz range; (ii)
deviations from the accepted frequency dependence, that can be ascribed to some
kind of vortex creep; (iii) the presence of switching phenomena, reminiscent of
vortex instabilities. We discuss the possible origin of the features here
reported.Comment: 5 pages, 3 figures, presented at VORTEX VI Conference, to appear on
Physica
Superconducting nanowire quantum interference device based on Nb ultrathin films deposited on self-assembled porous Si templates
Magnetoresistance oscillations were observed on networks of superconducting
ultrathin Nb nanowires presenting evidences of either thermal or quantum
activated phase slips. The magnetic transport data, discussed in the framework
of different scenarios, reveal that the system behaves coherently in the
temperature range where the contribution of the fluctuations is important.Comment: accepted for publication on Nanotechnolog
Interface Transparency of Nb/Pd Layered Systems
We have investigated, in the framework of proximity effect theory, the
interface transparency T of superconducting/normal metal layered systems which
consist of Nb and high paramagnetic Pd deposited by dc magnetron sputtering.
The obtained T value is relatively high, as expected by theoretical arguments.
This leads to a large value of the ratio although Pd does
not exhibit any magnetic ordering.Comment: To be published on Eur. Phys. J.
Robustness of the transition against compositional and structural ageing in S/F/S heterostructures
We have studied the temperature induced thermodynamic transition in
Nb/PdNi/Nb Superconductor/Ferromagnetic/Superconductor (SFS) heterostructures
by microwave measurements of the superfluid density. We have observed a shift
in the transition temperature with the ageing of the heterostructures,
suggesting that structural and/or chemical changes took place. Motivated by the
electrodynamics findings, we have extensively studied the local structural
properties of the samples by means of X-ray Absorption Spectroscopy (XAS)
technique, and the compositional profile by Time-of-Flight Secondary Ion Mass
Spectrometry (ToF-SIMS). We found that the samples have indeed changed their
properties, in particular for what concerns the interfaces and the composition
of the ferromagnetic alloy layer. The structural and compositional data are
consistent with the shift of the transition toward the behaviour of
heterostructures with different F layers. An important emerging indication to
the physics of SFS is the weak relevance of the ideality of the interfaces:
even in aged samples, with less-than-ideal interfaces, the temperature-induced
transition is still detectable albeit at a different critical F
thickness.Comment: 11 pages, 9 figures, accepted for publication on Phys. Rev. B,
http://journals.aps.org/prb
Microwave properties of Nb/PdNi/Nb trilayers. Observation of flux flow in excess of Bardeen-Stephen theory
We combine wideband (1-20 GHz) Corbino disk and dielectric resonator (8.2
GHz) techniques to study the microwave properties in Nb/PdNi/Nb trilayers,
grown by UHV dc magnetron sputtering, composed by Nb layers of nominal
thickness =15 nm, and a ferromagnetic PdNi layer of thickness = 1, 2,
8 and 9 nm. We focus on the vortex state. Magnetic fields up to were
applied. The microwave resistivity at fixed increases with ,
eventually exceeding the Bardeen Stephen flux flow value.Comment: 6 pages. Submitted to Journal of Superconductivity and Novel
Magnetis
Nonlinear current-voltage characteristics due to quantum tunneling of phase slips in superconducting Nb nanowire networks
We report on the transport properties of an array of N about 30
interconnected Nb nanowires, grown by sputtering on robust porous Si
substrates. The analyzed system exhibits a broad resistive transition in zero
magnetic field, H, and highly nonlinear V(I) characteristics as a function of H
which can be both consistently described by quantum tunneling of phase slips.Comment: accepted for publication on Appl. Phys. Let
Competitive nucleation in reversible probabilistic cellular automata
The problem of competitive nucleation in the framework of probabilistic cellular automata is studied from the dynamical point of view. The dependence of the metastability scenario on the self-interaction is discussed.An intermediate metastable phase, made of two flip-flopping chessboard configurations, shows up depending on the ratio between the magnetic field and the self-interaction. A behavior similar to the one of the stochastic Blume-Capel model with Glauber dynamics is found
The Application of Barocaloric Solid-State Cooling in the Cold Food Chain for Carbon Footprint Reduction
In this paper, the application of solid-state cooling based on the barocaloric effect in the cold food supply chain is investigated. Barocaloric solid-state technology is applied to the final links of the cold food supply chain regarding the steps of retail and domestic conservation. In this context, effective barocaloric cooling entails the refrigeration of food at 5 °C (273 K) and as such is a promising cooling technology due to its energy efficiency and environmental friendliness. The categories of food involved in this investigation are meat and fresh food products like soft cheese, yogurt, and milk. The energy performance of the barocaloric system is analyzed and compared with a commercial vapor compression refrigerator of a similar size, both operating using R600a under the same working conditions. Based on the results of this comparison, it is concluded that barocaloric cooling is a favorable technology for application in the final links of the cold food supply chain if the system operates in an ABR cycle at frequencies between 1.25 and 1.50 Hz with a regenerator comprising acetoxy silicone rubber as the solid-state refrigerant and a 50%EG–50% water mixture as the heat transfer fluid flowing at an optimal velocity of 0.15 m s−1. Thus, an appropriate tradeoff between the temperature span, cooling power, and coefficient of performance is guaranteed. Under these conditions, the barocaloric system outperforms the domestic vapor compression cooler operating using R600a
- …