4,253 research outputs found

    Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration.

    Get PDF
    The regenerative capacity of skeletal muscle declines with age. Previous studies suggest that this process can be reversed by exposure to young circulation; however, systemic age-specific factors responsible for this phenomenon are largely unknown. Here we report that oxytocin--a hormone best known for its role in lactation, parturition and social behaviours--is required for proper muscle tissue regeneration and homeostasis, and that plasma levels of oxytocin decline with age. Inhibition of oxytocin signalling in young animals reduces muscle regeneration, whereas systemic administration of oxytocin rapidly improves muscle regeneration by enhancing aged muscle stem cell activation/proliferation through activation of the MAPK/ERK signalling pathway. We further show that the genetic lack of oxytocin does not cause a developmental defect in muscle but instead leads to premature sarcopenia. Considering that oxytocin is an FDA-approved drug, this work reveals a potential novel and safe way to combat or prevent skeletal muscle ageing

    A quantitative central limit theorem for linear statistics of random matrix eigenvalues

    Full text link
    It is known that the fluctuations of suitable linear statistics of Haar distributed elements of the compact classical groups satisfy a central limit theorem. We show that if the corresponding test functions are sufficiently smooth, a rate of convergence of order almost 1/n1/n can be obtained using a quantitative multivariate CLT for traces of powers that was recently proven using Stein's method of exchangeable pairs.Comment: Title modified; main result stated under slightly weaker conditions; accepted for publication in the Journal of Theoretical Probabilit

    The smallest eigenvalue of Hankel matrices

    Full text link
    Let H_N=(s_{n+m}),n,m\le N denote the Hankel matrix of moments of a positive measure with moments of any order. We study the large N behaviour of the smallest eigenvalue lambda_N of H_N. It is proved that lambda_N has exponential decay to zero for any measure with compact support. For general determinate moment problems the decay to 0 of lambda_N can be arbitrarily slow or arbitrarily fast. In the indeterminate case, where lambda_N is known to be bounded below by a positive constant, we prove that the limit of the n'th smallest eigenvalue of H_N for N tending to infinity tends rapidly to infinity with n. The special case of the Stieltjes-Wigert polynomials is discussed

    The BCS Functional for General Pair Interactions

    Full text link
    The Bardeen-Cooper-Schrieffer (BCS) functional has recently received renewed attention as a description of fermionic gases interacting with local pairwise interactions. We present here a rigorous analysis of the BCS functional for general pair interaction potentials. For both zero and positive temperature, we show that the existence of a non-trivial solution of the nonlinear BCS gap equation is equivalent to the existence of a negative eigenvalue of a certain linear operator. From this we conclude the existence of a critical temperature below which the BCS pairing wave function does not vanish identically. For attractive potentials, we prove that the critical temperature is non-zero and exponentially small in the strength of the potential.Comment: Revised Version. To appear in Commun. Math. Phys

    Graphene transistors are insensitive to pH changes in solution

    Full text link
    We observe very small gate-voltage shifts in the transfer characteristic of as-prepared graphene field-effect transistors (GFETs) when the pH of the buffer is changed. This observation is in strong contrast to Si-based ion-sensitive FETs. The low gate-shift of a GFET can be further reduced if the graphene surface is covered with a hydrophobic fluorobenzene layer. If a thin Al-oxide layer is applied instead, the opposite happens. This suggests that clean graphene does not sense the chemical potential of protons. A GFET can therefore be used as a reference electrode in an aqueous electrolyte. Our finding sheds light on the large variety of pH-induced gate shifts that have been published for GFETs in the recent literature
    corecore