48 research outputs found

    Effects of plant food potassium salts (citrate galacturonate or tartrate) on acid–base status and digestive fermentations in rats

    Get PDF
    Potassium (K) organic anion salts, such as potassium citrate or potassium malate in plant foods, may counteract low-grade metabolic acidosis induced by western diets, but little is known about the effect of other minor plant anions. Effects of K salts (chloride, citrate, galacturonate or tartrate) were thus studied on the mineral balance and digestive fermentations in groups of 6-week-old rats adapted to an acidogenic/5 % inulin diet. In all diet groups, substantial amounts of lactate and succinate were present in the caecum, besides SCFA. SCFA were poorly affected by K salts conditions. The KCl-supplemented diet elicited an accumulation of lactate in the caecum; whereas the lactate caecal pool was low in rats fed the potassium tartrate-supplemented (K TAR) diet. A fraction of tartrate (around 50 %) was recovered in urine of rats fed the K TAR diet. Potassium citrate and potassium galacturonate diets exerted a marked alkalinizing effect on urine pH and promoted a notable citraturia (around 0·5 μmol/24 h). All the K organic anion salts counteracted Ca and Mg hyperexcretion in urine, especially potassium tartrate as to magnesuria. The present findings indicate that K salts of unabsorbed organic anions exert alkalinizing effects when metabolizable in the large intestine, even if K and finally available anions (likely SCFA) are not simultaneously bioavailable. Whether this observation is also relevant for a fraction of SCFA arising from dietary fibre breakdown (which represents the major organic anions absorbed in the digestive tract in man) deserves further investigation

    Effect of potassium salts in rats adapted to an acidogenic high-sulfur amino acid diet

    Get PDF
    Low-grade metabolic acidosis, consecutive to excessive catabolism of sulfur amino acids and a high dietary Na:K ratio, is a common feature of Western food habits. This metabolic alteration may exert various adverse physiological effects, especially on bone, muscle and kidneys. To assess the actual effects of various K salts, a model of the Westernised diet has been developed in rats: slight protein excess (20 % casein); cations provided as non-alkalinising salts; high Na:K ratio. This diet resulted in acidic urine (pH 5·5) together with a high rate of divalent cation excretion in urine, especially Mg. Compared with controls, K supplementation as KCl accentuated Ca excretion, whereas potassium bicarbonate or malate reduced Mg and Ca excretion and alkalinised urine pH (up to 8). In parallel, citraturia was strongly increased, together with 2-ketoglutarate excretion, by potassium bicarbonate or malate in the diet. Basal sulfate excretion, in the range of 1 mmol/d, was slightly enhanced in rats fed the potassium malate diet. The present model of low-grade metabolic acidosis indicates that potassium malate may be as effective as KHCO3 to counteract urine acidification, to limit divalent cation excretion and to ensure high citrate concentration in urine

    Sucres simples purifiés versus sucres des aliments naturels, ont-ils les mêmes effets métaboliques ?

    No full text
    National audienceLes sucres simples (saccharose, glucose, fructose) peuvent être apportés par des produits végétaux complexes tels que les fruits et légumes, ou sous forme purifiée. La consommation de sucres purifiés de toutes origines est nettement plus élevée que celle des végétaux naturels. Dans ces aliments, le sucre bénéficie d'un environnement nutritionnel riche en minéraux, micronutriments, fibres alimentaires, acides organiques de potassium favorable au fonctionnement de l'organisme. À l'inverse, une consommation élevée de sucres purifiés induit diverses déviations métaboliques (liées à la lipogenèse hépatique) et prive l'organisme de nombreux micronutriments protecteurs

    The effect of high-fibre diet on plasma lipoproteins and hormones in genetically obese Zucker rats

    No full text
    International audienc

    Sourdough fermentation of wheat fractions rich in fibres before their use in processed food

    No full text
    International audienceFibre-rich fractions of wheat are an important source of minerals but also contain considerable amounts of phytic acid, known to impair mineral absorption. This study explores the efficiency of wheat bran sourdough fermentation on phytate hydrolysis and mineral solubility, in comparison with whole-wheat flour. In vitro trials were performed to assess the consequences of the addition of calcium carbonate (CaCO3), an alkalinising salt, on phytic acid breakdown and mineral bioavailability during sourdough fermentation. Sourdough fermentation was found effective for solubilising minerals in whole-wheat flours but was less effective with bran. In addition, sourdough acidity was blunted by the addition of CaCO3, whereas degradation of phytic acid remained effective. Despite extensive breakdown of phytic acid (almost 70%), the addition of calcium exerted a very negative effect on zinc solubility. In conclusion, a pre-fermentation process of whole cereals or bran, in suitable conditions of hydration, allows degradation of the major part of phytic acid and optimal mineral bioavailability

    Protective Effects of High Dietary Potassium: Nutritional and Metabolic Aspects

    No full text
    Potassium (K+) requirements have been largely overlooked because severe deficiencies are uncommon due to the ubiquity of this element in foods. However, a transition toward modern ("Westernized") diets has led to a substantial decline of K+ intake compared with traditional food habits, and a large fraction of the population might now have suboptimal K+ intake. A high K+ intake was demonstrated to have protective effects against several pathologic states affecting the cardiovascular system, kidneys, and bones. Additionally, fruits and vegetables contain K/organic anion salts (malate, citrate), which exert alkalinizing effects, through KHCO3– generation, which serves to neutralize fixed acidity in urine. Low-grade metabolic acidosis, when not properly controlled, may exacerbate various catabolic processes (bone Ca++ mobilization, proteolysis), especially in the elderly. Fruits and vegetables are therefore receiving great attention in a strategy to increase the nutritional value of meals while reducing energy density and intake. The need to ensure a 2.5- to 3.5-g daily K+ supply from fruits and vegetables represents a strong rationale for the "5–10 servings per day" recommendations
    corecore