850 research outputs found

    The distribution of particulate material on Mars

    Get PDF
    The surface materials on Mars were extensively studied using a variety of spacecraft and Earth-based remote sensing observations. These measurements include: (1) diurnal thermal measurements, used to determine average particle size, rock abundance, and the presence of crusts; (2) radar observations, used to estimate the surface slope distributions, wavelength scale roughness, and density; (3) radio emission observations, used to estimate subsurface density; (4) broadband albedo measurements, used to study the time variation of surface brightness and dust deposition and removal; and (5) color observations, used to infer composition, mixing, and the presence of crusts. Remote sensing observations generally require some degree of modeling to interpret, making them more difficult to interpret than direct observations from the surface. They do, however, provide a means for examining the surface properties over the entire planet and a means of sampling varying depths within the regolith. Albedo and color observations only indicate the properties of the upper-most few microns, but are very sensitive to thin, sometimes emphemeral dust coatings. Thermal observations sample the upper skin depth, generally 2 to 10 cm. Rock abundance measurements give an indirect indication of surface mantling, where the absence of rocks suggests mantles of several meters. Finally, radar and radio emission data can penetrate several meters into the surface, providing an estimate of subsurface density and roughness

    Variations of Martian surface albedo: Evidence for yearly dust deposition and removal

    Get PDF
    The purpose is to determine the degree, spatial distribution and timing of the deposition and removal of dust storm fallout, and to relate the current patterns of dust deposition and removal to the long-term evolution of the Martian surface. Southern Hemisphere dark areas are found to quickly return to close to their pre-storm albedos, suggesting rapid removal of any dust that was deposited. Northern Hemisphere dark regions are brighter post-storm, but gradually darken to pre-storm levels over the Mars year. In doing so they act as local sources of dust during otherwise clear periods. Dust does not appear to be removed from bright regions, resulting in the 1 to 2 m thick deposits observed today

    Thermal-infrared spectral observations of geologic materials in emission

    Get PDF
    The thermal-infrared spectra of geologic materials in emission were studied using the prototype Thermal Emission Spectrometer (TES). A variety of of processes and surface modifications that may influence or alter the spectra of primary rock materials were studied. It was confirmed that thermal emission spectra contain the same absorption features as those observed in transmission and reflection spectra. It was confirmed that the TES instrument can be used to obtain relevant spectra for analysis of rock and mineral composition

    Planetary Data System Spaceborne Thermal Data Sub-Node of the Geosciences Node

    Get PDF
    The objectives of this proposal were: (1) to assemble the existing spacecraft thermal-infrared data and to place these data into a uniform format as specified by the PDS; (2) to develop a standardized software package, user interface, and catalog database to support the access and analysis of existing and planned thermal infrared datasets in order to provide wide community access to these data; (3) to support the distribution of Thermal SubNode data to users as requested; (4) to incorporate future spacecraft thermal observations into the Thermal SubNode; and (5) to sponsor workshops on the applications of Thermal SubNode data

    Ejecta patterns of Meteor Crater, Arizona derived from the linear un-mixing of TIMS data and laboratory thermal emission spectra

    Get PDF
    Accurate interpretation of thermal infrared data depends upon the understanding and removal of complicating effects. These effects may include physical mixing of various mineralogies and particle sizes, atmospheric absorption and emission, surficial coatings, geometry effects, and differential surface temperatures. The focus is the examination of the linear spectral mixing of individual mineral or endmember spectra. Linear addition of spectra, for particles larger than the wavelength, allows for a straight-forward method of deconvolving the observed spectra, predicting a volume percent of each endmember. The 'forward analysis' of linear mixing (comparing the spectra of physical mixtures to numerical mixtures) has received much attention. The reverse approach of un-mixing thermal emission spectra was examined with remotely sensed data, but no laboratory verification exists. Understanding of the effects of spectral mixing on high resolution laboratory spectra allows for the extrapolation to lower resolution, and often more complicated, remotely gathered data. Thermal Infrared Multispectral Scanner (TIMS) data for Meteor Crater, Arizona were acquired in Sep. 1987. The spectral un-mixing of these data gives a unique test of the laboratory results. Meteor Crater (1.2 km in diameter and 180 m deep) is located in north-central Arizona, west of Canyon Diablo. The arid environment, paucity of vegetation, and low relief make the region ideal for remote data acquisition. Within the horizontal sedimentary sequence that forms the upper Colorado Plateau, the oldest unit sampled by the impact crater was the Permian Coconino Sandstone. A thin bed of the Toroweap Formation, also of Permian age, conformably overlays the Coconino. Above the Toroweap lies the Permian Kiabab Limestone which, in turn, is covered by a thin veneer of the Moenkopi Formation. The Moenkopi is Triassic in age and has two distinct sub-units in the vicinity of the crater. The lower Wupatki member is a fine-grained sandstone, while the upper Moqui member is a fissile siltstone. Ejecta from these units are preserved as inverted stratigraphy up to 2 crater radii from the rim. The mineralogical contrast between the units, relative lack of post-emplacement erosion and ejecta mixing provide a unique site to apply the un-mixing model. Selection of the aforementioned units as endmembers reveals distinct patterns in the ejecta of the crater

    Non-linear Spectroscopy of Sr Atoms in an Optical Cavity for Laser Stabilization

    Full text link
    We study the non-linear interaction of a cold sample of strontium-88 atoms coupled to a single mode of a low finesse optical cavity in the so-called bad cavity limit and investigate the implications for applications to laser stabilization. The atoms are probed on the weak inter-combination line \lvert 5s^{2} \, ^1 \textrm{S}_0 \rangle \,-\, \lvert 5s5p \, ^3 \textrm{P}_1 \rangle at 689 nm in a strongly saturated regime. Our measured observables include the atomic induced phase shift and absorption of the light field transmitted through the cavity represented by the complex cavity transmission coefficient. We demonstrate high signal-to-noise-ratio measurements of both quadratures - the cavity transmitted phase and absorption - by employing FM spectroscopy (NICE-OHMS). We also show that when FM spectroscopy is employed in connection with a cavity locked to the probe light, observables are substantially modified compared to the free space situation where no cavity is present. Furthermore, the non-linear dynamics of the phase dispersion slope is experimentally investigated and the optimal conditions for laser stabilization are established. Our experimental results are compared to state-of-the-art cavity QED theoretical calculations.Comment: 7 pages, 4 figure

    Observation of Motion Dependent Nonlinear Dispersion with Narrow Linewidth Atoms in an Optical Cavity

    Full text link
    As an alternative to state-of-the-art laser frequency stabilisation using ultra-stable cavities, it has been proposed to exploit the non-linear effects from coupling of atoms with a narrow transition to an optical cavity. Here we have constructed such a system and observed non-linear phase shifts of a narrow optical line by strong coupling of a sample of strontium-88 atoms to an optical cavity. The sample temperature of a few mK provides a domain where the Doppler energy scale is several orders of magnitude larger than the narrow linewidth of the optical transition. This makes the system sensitive to velocity dependent multi-photon scattering events (Dopplerons) that affect the cavity field transmission and phase. By varying the number of atoms and the intra-cavity power we systematically study this non-linear phase signature which displays roughly the same features as for much lower temperature samples. This demonstration in a relatively simple system opens new possibilities for alternative routes to laser stabilization at the sub 100 mHz level and superradiant laser sources involving narrow line atoms. The understanding of relevant motional effects obtained here has direct implications for other atomic clocks when used in relation with ultranarrow clock transitions.Comment: 9 pages (including 4 pages of Supplemental Information), 6 figures. Updated to correspond to the published versio

    A field- and laboratory-based quantitative analysis of alluvium: Relating analytical results to TIMS data

    Get PDF
    Thermal Infrared Multispectral Scanner (TIMS) data were acquired over the McDowell Mountains northeast of Scottsdale, Arizona during August 1994. The raw data were processed to emphasize lithologic differences using a decorrelation stretch and assigning bands 5, 3, and 1 to red, green, and blue, respectively. Processed data of alluvium flanking the mountains exhibit moderate color variation. The objective of this study was to determine, using a quantitative approach, what environmental variable(s), in the absence of bedrock, is/are responsible for influencing the spectral properties of the desert alluvial surface

    Aerolian erosion, transport, and deposition of volcaniclastic sands among the shifting sand dunes, Christmas Lake Valley, Oregon: TIMS image analysis

    Get PDF
    Remote sensing is a tool that, in the context of aeolian studies, offers a synoptic view of a dune field, sand sea, or entire desert region. Blount et al. (1990) presented one of the first studies demonstrating the power of multispectral images for interpreting the dynamic history of an aeolian sand sea. Blount's work on the Gran Desierto of Mexico used a Landsat TM scene and a linear spectral mixing model to show where different sand populations occur and along what paths these sands may have traveled before becoming incorporated into dunes. Interpretation of sand transport paths and sources in the Gran Desierto led to an improved understanding of the origin and Holocene history of the dunes. With the anticipated advent of the EOS-A platform and ASTER thermal infrared capability in 1998, it will become possible to look at continental sand seas and map sand transport paths using 8-12 mu m bands that are well-suited to tracking silicate sediments. A logical extension of Blount's work is to attempt a similar study using thermal infrared images. One such study has already begun by looking at feldspar, quartz, magnetite, and clay distributions in the Kelso Dunes of southern California. This paper describes the geology and application of TIMS image analysis of a less-well known Holocene dune field in south central Oregon using TIMS data obtained in 1991
    corecore