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1. INTRODUCTION

Accurate interpretation of thermal infrared data depends upon the understanding

and removal of complicating effects. These effects may include physical mixing of var-

ious mineralogies and particle sizes, atmospheric absorption and emission, surficial coat-

ings, geometry effects and differential surface temperatures. The focus of this study is the
examination of the linear spectral mixing of individual mineral or endmember spectra.

Linear addition of spectra, for particles larger than the wavelength (Salisbury et al, 1987),

allows for a straight-forward method of deconvolving the observed spectra, predicting a

volume percent of each endmember. The 'forward analysis' of linear mixing (comparing

the spectra of physical mixtures to numerical mixtures) has received much attention

(Thomson & Salisbury 1991; Christensen et al, 1986). The reverse approach of un-mixing

thermal emission spectra has been examined with remotely sensed data (Adams et al,
1989; Gillespie et al, 1990), but no laboratory verification exists. Understanding of the

effects of spectral mixing on high resolution laboratory spectra allows for the extrap-
olation to lower resolution, and often more complicated, remotely gathered data.

Thermal Infrared Multispectral Scanner (TIMS) data for Meteor Crater, Arizona

were acquired in September, 1987. The spectral un-mixing of these data gives a unique

test of the laboratory results. Meteor Crater (1.2 km in diameter and 180 m deep) is
located in north-central Arizona, west of Canyon Diablo (Shoemaker & Kieffer, 1974).

The arid environment, paucity of vegetation and low relief make the region ideal for
remote data acquisition. Within the horizontal sedimentary sequence that forms the upper

Colorado Plateau, the oldest unit sampled by the impact crater was the Permian Coconino

Sandstone. A thin bed of the Toroweap Formation, also of Permian age, conformably

overlays the Coconino. Above the Toroweap lies the Permian Kiabab Limestone which,
in turn, is covered by a thin veneer of the Moenkopi Formation. The Moenkopi is

Triassic in age and has two distinct sub-units in the vicinity of the crater. The lower,

Wupatki member, is a fine-grained sandstone, while the upper, Moqui member, is a
fissile siltstone (Shoemaker & Kieffer, 1974). Ejecta from these units are preserved as

inverted stratigraphy up to 2 crater radii from the rim. The mineralogical contrast
between the units, relative lack of post-emplacement erosion (Grant & Schultz, 1989) and

ejecta mixing provide a unique site to apply the un-mixing model. Selection of the
aforementioned units as endmembers reveals distinct patterns in the ejecta of the crater.

2. LABORATORY SPECTRA
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Particlesbetween355and5001amwereusedtoreducetheeffectsof volume scat-

tering; the choice of endmember minerals approximates the mixing of Kiabab Limestone
and Coconino Sandstone in the crater ejecta. Laboratory thermal emission spectra (Fig. 1)

of the powders were acquired on a Mattson Cygnus 100 b'TIR interferometer/spectro-

meter. Absolute emissivity was obtained using the technique described by (Christensen &
Harrison, 1992). The endmember components, mixed by volume into binary mixtures,

were agitated after each of the five spectTal acquisitions. This process assured accurate

spectral sampling and charted the daily variation of the spectrometer, which varied by less
than 1% absolute emissivity. The five runs were then averaged to produce a final

spectrum. The calcite endmember spectra shows the characteristic absorption band
associated with the vibration of the carbonate ion (.,1550 cm -1) and the large reststrahlen

band produced by the Si-O bending mode of quartz (_1150 cm -1) (Salisbury et al, 1987).

I ' ° ' I ' ' ' I ' ' ' I ' ' ' I ' ' ' I ' ' '

1 _:.. ,,..: FIG. 1. Emission

spectra of 355-500p.m
.8

.6

.2

1600 1400 1200 1000 800 600 400

Wavemu,ber (cm"1)
(J. = 6.2J - 2J.O I_n)

The spectra of the two endmembers were used as reference inputs to the model. A

least-squares fit of the data results in the percentage of each endmember as well as the

"goodness-of-fit" of the model to the data (rms error) (Adams et al, 1989; Gillespie et al,
1990). Figure 2 shows the results for the quartz endmember. Predicted percentages were
within 8% of actual values and validate the linear assumption for particles larger than the

wavelength. The largest rms errors (Fig. 1) occur over the strong absorption features, and

are due to a band shallowing in the spectra of the physical mixtures. The behavior over

these regions, a function of the photon path length and the imaginary part of the index of

refraction kQ.), appears to be slightly non-linear. The use of unimodal grain sizes virtually

eliminates a change in the path length, indicating the non-linear behavior must be related

to the change in the overall kQ.) of the mixture. The band shallowing can be approximated

by the addition of blackbody emissivity (Ramsey & Christensen, 1992).
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Usingaconstantemissivityof 1.0asathirdendmemberimprovedthe results to better
than 5%, reducing the errors over the bands. The model, re-run on the lab spectra
convolved to TIMS resolution, predicted the percentages to within 10%; however, no

attempt was made to model the effect of additional noise.

3. METEOR CRATER IMAGE ANALYSIS

Standard image enhancement techniques such as the decorrelation stretch do not

account for large temperature differentials within the scene and tend to stretch microphonic
noise as well. A spectral un-mixing analysis eliminates these problems, however. For

this study, six emissivity images were extracted from the TIMS data using the spectrum
normalization technique (Realmuto, 1990). An improvement in the algorithm allows for

interactive linear stretching of the emissivity images for a maximum spectral contrast prior

to input into the un-mixing program. The aforementioned stratigraphic units were used as
endmembers for the model (5 total). These endmembers accurately fit the data to within +

2 DN except for areas over the buildings and road. The Coconino endmember image

clearly reveals a NE trending windstreak (Granl & Schultz, I989), which is a thin (<50 cm)
veneer of eolian-derived material. In addition, subtle patterns within the Kiabab indicate

the true extent of the ejecta. This supports the interpretation of (GranZ & Schultz, 1989)

who state that the ejecta is well-preserved below the thin alluvial mantling deposits derived
from Holocene erosion. These patterns are not evident in the decorrelation stretched image

and must be field verified. Differentiation of slight mineralogical changes within the

Moenkopi are also clearly distinguished and allow for improved eject mapping.
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