2 research outputs found

    Customization of IBM Intu’s Voice by Connecting Text-to-Speech Services and a Voice Conversion Network

    Get PDF
    IBM has recently launched Project Intu, which extends the existing web-based cognitive service Watson with the Internet of Things to provide an intelligent personal assistant service. We propose a voice customization service that allows a user to directly customize the voice of Intu. The method for voice customization is based on IBM Watson’s text-to-speech service and voice conversion model. A user can train the voice conversion model by providing a minimum of approximately 100 speech samples in the preferred voice (target voice). The output voice of Intu (source voice) is then converted into the target voice. Furthermore, the user does not need to offer parallel data for the target voice since the transcriptions of the source speech and target speech are the same. We also suggest methods to maximize the efficiency of voice conversion and determine the proper amount of target speech based on several experiments. When we measured the elapsed time for each process, we observed that feature extraction accounts for 59.7% of voice conversion time, which implies that fixing inefficiencies in feature extraction should be prioritized. We used the mel-cepstral distortion between the target speech and reconstructed speech as an index for conversion accuracy and found that, when the number of target speech samples for training is less than 100, the general performance of the model degrades

    Verification of the Seismic Performance of a Rigidly Connected Modular System Depending on the Shape and Size of the Ceiling Bracket

    No full text
    Modular systems have been mostly researched in relatively low-rise structures but, lately, their applications to mid- to high-rise structures began to be reviewed, and research interest in new modularization subjects has increased. The application of modular systems to mid- to high-rise structures requires the structural stability of the frame and connections that consist of units, and the evaluation of the stiffness of structures that are combined in units. However, the combination of general units causes loss of the cross-section of columns or beams, resulting in low seismic performance and hindering installation works in the field. In addition, the evaluation of a frame considering such a cross-sectional loss is not easy. Therefore, it is necessary to develop a joint that is stable and easy to install. In the study, a rigidly connected modular system was proposed as a moment-resisting frame for a unit modular system, and their joints were developed and their performances were compared. The proposed system changed the ceiling beam into a bracket type to fasten bolts. It can be merged with other seismic force-resisting systems. To verify the seismic performance of the proposed system, a cyclic loading test was conducted, and the rigidly connected joint performance and integrated behavior at the joint of modular units were investigated. From the experimental results, the maximum resisting force of the proposed connection exceeded the theoretical parameters, indicating that a rigid joint structural performance could be secured
    corecore