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Abstract

IBM has recently launched Project Intu, which
extends the existing web-based cognitive service Watson
with the Internet of Things to provide an intelligent
personal assistant service. We propose a voice
customization service that allows a user to directly
customize the voice of Intu. The method for voice
customization is based on IBM Watson’s text-to-speech
service and voice conversion model. A user can train
the voice conversion model by providing a minimum of
approximately 100 speech samples in the preferred voice
(target voice). The output voice of Intu (source voice)
is then converted into the target voice. Furthermore,
the user does not need to offer parallel data for the
target voice since the transcriptions of the source speech
and target speech are the same. We also suggest
methods to maximize the efficiency of voice conversion
and determine the proper amount of target speech
based on several experiments. When we measured
the elapsed time for each process, we observed
that feature extraction accounts for 59.7% of voice
conversion time, which implies that fixing inefficiencies
in feature extraction should be prioritized. We used
the mel-cepstral distortion between the target speech
and reconstructed speech as an index for conversion
accuracy and found that, when the number of target
speech samples for training is less than 100, the general
performance of the model degrades.

1. Introduction

One of the major interests for artificial intelligence
(AI) researchers is to improve the naturalness of
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communication and interaction with machines.
Recently, machine learning approaches using neural
networks have achieved outstanding performance in
various AI applications and some have already been
commercialized by several enterprises [1–3].

One of the most significant AI applications is the
Internet of Things (IoT). It is natural to utilize AI
technology in IoT because IoT demands dynamic data
communication between devices and users in order
to provide flexible and integrated services. Amazon
Alexa [1], Google Home [2], and IBM Project Intu [3]
are examples of current intelligent personal assistant
services.

An intelligent personal assistant service is a system
that interacts with a user through text or voice. The main
objective of the intelligent personal assistant service is to
provide human language interactions to the user, similar
to a human assistant.

We propose a method to improve the quality of user
experiences with intelligent personal assistant services.
Current commercial assistant services support preset
voices only. Therefore, we implemented a service that
allows users to customize the voice of the IBM Intu
intelligent personal assistant. We expect users to have
more rich and intimate experience by using a voice that
they prefer.

IBM Watson [4] is an integrated cognitive service
that provides partial AI services, such as text-based
conversation [5], translation [6], etc. IBM Intu
is middleware that provides an intelligent personal
assistant service by leveraging the appropriate Watson
services. Because Intu shares the data yielded by
Watson services internally, it can perform a wider range
of functions.

Developers can design Intu’s process routine by
creating and allocating modules for specific tasks.
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Figure 1. Mechanism for voice conversion using a

neural network.

Additionally, developers may incorporate desired
Watson services into each Intu module. Intu’s modular
structure allows us to perform experiments on it while
using simplified structures.

We implemented a voice customization service by
integrating Watson’s text-to-speech (TTS) service [7],
which generates speech from text sentences, and a voice
conversion network (VCN). Voice conversion is the
transformation of some source speech into the speech
of a target voice, as depicted in Figure 1. The reason
for including the TTS module in the voice customization
service is that Intu first obtains the text corresponding to
the content of the output speech and then generates the
speech by using the TTS module.

A voice customization service can be achieved in
two ways. One is to use a TTS model to directly
generate the voice a user wants.

For example, DeepMind’s WaveNet trains a model
for multi-speaker identity and TTS mapping by
exploiting speech data from multiple speakers [8].
However, for in a real world voice customization service
environment, an increasing number of speaker identities
should be supported. Therefore, a single integrated
model with fixed complexity must be verified for the
scalability of speaker identities.

The other way to customize a voice is to use a VCN
to convert the output voice of a TTS model. The model
we implemented uses a training module for speaker
identity and a TTS module separately. Therefore, when
a new speaker identity needs to be added to the model,
we only need to train a new voice conversion module.

Most recent voice conversion models require parallel
data for a target voice during training [9–12]. In
other words, the speech data for two or more speakers
pronouncing the same sentence is necessary. However,
it is difficult for a real user to prepare parallel data.
Additionally, the time frame for the parallel data must be
aligned in order to train the frame-wise mapping model.

However, the model proposed in [13] does not
require parallel data for the target voice during
training. Furthermore, the input data and their labels
are generated from same target speech, meaning that
additional data alignment is unnecessary. Therefore,

Watson
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Query with 
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Figure 2. Data flow of the Intu service.

we decided to implement the voice conversion model
proposed in [13] and integrate it with Intu.

In this study, we implemented the simplified
Intu-VCN model, which returns user speech in a
customized voice. The model has been specialized
for our experiments. We found ways to reduce the
additional time required by the VCN and determined
the appropriate number of target speech samples.
The main contributions of our work are as follows:

1) We implemented a prototype of a voice
customization service for the IBM Intu, intelligent
personal assistant service, through a combination of Intu
and a VCN.

2) We quantitatively investigated the
problems of the time consumption and the
number of target speech samples problems by
conducting experiments in realistic situations.

The remainder of this paper is organized as follows:
In Section 2, we briefly discuss related work on
IBM Watson, Project Intu, TTS, and voice conversion.
Preliminary knowledge that is required for better
understanding of the proposed method is in Section 3.
Section 4 describes the integrated model for Intu and a
VCN in detail. In Section 5, we design and perform
several experiments that were necessary for launching
our voice customization model. Our conclusions are
presented in Section 6.

2. Related work

2.1. IBM Watson and Project Intu

The IBM Watson service is an integrated cognitive
system that provides the module-based functions of
an AI service [4]. Additionally, Watson is designed
with extensibility to allow users to assemble Watson
instances of each service for additional applications.

If a user’s device provides credential information
for authentication and a query to Watson’s server, the
server verifies the credentials and returns a service
response. For instance, the model we implemented
sends a text-format sentence to the server and receives
the corresponding speech from the Watson TTS service
[7].
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Project Intu is middleware that expands Watson into
the IoT environment [3]. When an Intu device detects
user input, the Watson service is used to provide the
corresponding output to the device [3]. As shown
in Figure 2, Intu sends queries, including credential
information, to the server when using the Watson
service. The main modules that comprise Intu are the
extractor, blackboard, agent, and gesture.

The extractor is placed at the beginning of Intu’s
data processing module and preprocesses inputs so that
the data are suitable for the following modules. For
instance, the extractor converts the visual information
from a camera into an image format or the voice
information from a microphone into a text format.

In the blackboard, the input and output data of the
IoT devices, as well as the intermediate data generated
during processing, are shared between other modules.
When agent and gesture subscribe to a specific type of
data in the blackboard, they read and handle data in real
time whenever new data are registered in the blackboard.
Even if the data are in the same format, the blackboard
redefines the data in a wrapped type to distinguish data
during processing. For example, text obtained from
input speech and a text response from a Watson service
have different types.

The agent is a module that performs the
sub-processes associated with assistant tasks. Agents
internally invoke Watson services in general and execute
tasks by combining sub-processes. In most cases, agents
read data from the blackboard and send them to the
Watson service in the form of a query in order to obtain
an output, which is then passed back to the blackboard.
The output of an agent is passed to successive agents
as input or output by gestures. Examples of agents are
the weather agent, which returns information about
the weather, and the emotion agent, which classifies
person’s emotions as positive or negative.

The gesture is a module that handles Intu’s output
and sometimes calls a specific Watson service in the
process. The gesture module performs actions such as
outputting speech through a speaker or playing sounds.
Additionally, actions such as sending a message to
another device or controlling a device are also outputs
of gestures. In other words, while agents are responsible
for computing or processing data, gestures perform the
passive role of transferring data to an output device or
carrying out instructions contained in the data.

2.2. Text-to-Speech (TTS)

TTS is a task that generates audible speech from text.
Typically, TTS methods can be divided into two types
based on how the speech is synthesized [8, 14]. One

is to find the optimal sequence of acoustic units from a
database and concatenate them into speech [8,15,16]. In
this method, large amounts of speech data are segmented
into phonetic units and stored in the database [15, 16].
The other method is to generate waves directly by
predicting acoustic features from the phonetic units of
the parsed input text [17].

Both methods have advantages and disadvantages,
and both are currently in use. Speech generated using
the former method has high naturalness because the
acoustic units are derived from real speech. However,
sufficient numbers of acoustic units must be stored
in order to create an optimal sequence for all text.
The latter method only needs to store the model’s
parameters. However, speech reconstruction with
parameters of acoustic features with a vocoder is
vulnerable to loss of detailed features.

The unit selection technique, an example of the
former method types, was firstly introduced in the past.
Next, methods in which speech is directly reconstructed
from the parameters of acoustic features, which are
derived from hidden Markov models (HMMs), were
proposed as representatives of the latter method type
[14, 17].

Recently, there have been studies on applying dilated
convolution or recurrent neural network (RNN) models
to both speech synthesis method types in order to learn
the context dependencies of speech [8,18]. DeepMind’s
WaveNet [8] uses a dilated convolution model as its
main component. Baidu’s Deep Voice uses gated
recurrent units to predict phoneme duration and F0
values, and synthesizes audio by using a bidirectional
quasi-RNN layer, which is one of many RNN variants
[18]. The Watson TTS model uses a deep bidirectional
long short-term memory (DBLSTM) model to extract
prosodic features from text [7, 19, 20].

The Watson TTS model concatenates optimal
acoustic units into the output speech. Because the model
has to store a large number of acoustic units for each
speaker [19], it is difficult to add a new speaker identity
with the small amount of data that a typical user can
prepare.

The other TTS models discussed above also require
large amounts of training data to learn the relationships
between the linguistic features of text and the acoustic
features of speech [8, 18–20]. For example, WaveNet
requires 24.6 h of speech data for a single speaker TTS
model [8] and Deep Voice requires approximately 20 h
of speech data [18]. Watson’s TTS model also requires
hours of single speaker speech data to train its prosody
target model [19, 20].

WaveNet is powerful because it can learn TTS
tasks and multiple speaker identities in the same
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model. Furthermore, it reduces the required amount
of speech data from each speaker because the internal
representation of the model is shared between speakers
[8]. However, because the two types of characteristics
are learned in a single model, the process of learning
speaker identities cannot be done separately. This means
that the model must be able to learn an increasing
number of speaker identities in the fixed model. As a
result, we must confirm that the model is stable in terms
of scalability of speaker identities.

In conclusion, we determined that replacing the
Watson TTS model with another TTS model is
meaningless. Therefore, we kept the Watson TTS model
for the TTS portion of our voice customization model.

2.3. Voice conversion

In the past, one of the main methods of voice
conversion was to map source speech onto target speech
discretely [21,22]. In [21], codebooks for source voices,
target voices, and mapping are constructed for voice
conversion. In [22], the index of the target voice’s
codebook is mapped from the feature vector of the
source speech by using a feedforward neural network.

Studies on preserving the continuity of acoustic
features followed these early works. Most studies
modeled the acoustic features of the source and target
voices by using a Gaussian mixture model (GMM) or
joint density GMM (JDGMM) [23–26]. However, these
models could not prevent the loss of acoustic features,
such as the features of time dependency, and displayed
over-smoothing effects. There have been numerous
studies aimed at solving these problems [26–29].

Various neural networks have been used in place
of GMMs or JDGMMs for feature space modeling
[9–13,30]. For instance, a restricted Boltzmann machine
(RBM) and a deep belief network (DBN) have both
been used to model the spectral distributions of the
source and target voices [9,10,30]. Recently, there have
been efforts to preserve the time dependency of speech
by introducing long short-term memory (LSTM) and
bidirectional LSTM [11, 13].

However, most recent research has been restricted
to the use of parallel data, meaning the pronunciations
of the source and target voices are paired for the same
sentences [9–12]. Parallel data makes modeling difficult
due to the expense of data collection and incomplete
frame alignment [13].

In [13], the authors solved the problems associated
with parallel data by extracting speaker-independent
linguistic features. Because the model can extract both
speaker-independent linguistic features and acoustic
features from the target speech, the model does not

require parallel data and avoids the frame alignment
issue [13]. Furthermore, the model exploits DBLSTM
for the robust learning of time dependencies [13].
Therefore, we adopted the model proposed in [13] to
implement our voice customization service for Intu.

3. Preliminaries

3.1. Phonetic class posterior probabilities
(PPPs)

Phonetic class posterior probabilities (PPPs) are a
way to represent the linguistic state in each time frame
of speech. The phonetic class can be set differently
based on the scope of speech segmentation, such as
for phonemes, triphones, or senones. The transcription
of speech can be divided into phonemes. However,
a phoneme is voiced differently depending on the
surrounding context because of the phonemic rules and
mechanics involved in speech production.

Triphones can be used to reduce this ambiguity.
A triphone is a subdivision of phonemes based on
the preceding and subsequent phonemes. However,
the number of different triphones is very large
(over 50,000). A senone reduces the number of
possibilities by clustering groups of triphones with
similar pronunciation patterns. Therefore, we adopted
the senone for our phonetic class.

3.2. Mel-frequency cepstral coefficients
(MFCCs)

Mel-frequency cepstral coefficients (MFCCs) are
spectral representations of speech. The reason for using
MFCC features for voice recognition is that the domain
of mel-scale frequency reflects human sound perception.
The higher a sound’s frequency, the more difficult it is
for humans to perceive a change in its frequency. The
mel-scale frequency domain is a log-scaled domain that
levelizes the human sound perception space.

3.3. Mel-cepstral coefficients (MCEPs)

Mel-cepstral coefficients (MCEPs) correspond to the
coefficients when the spectrum of a signal is represented
by an M -th order expression. This is shown in Eq. (1),
which uses mel-cepstral analysis [31].

H(z) = exp

M∑
m=0

cα(m)z̃−m (1)

z̃−1 =
z−1 − α

1− αz−1
(2)
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where cα(m) is the m-th order of mel-cepstral
coefficients of the spectrumH(z) and the α is a constant
for the first order all-pass function shown in Eq. (2) [31].
We used the MCEP feature as a representation of the
spectral envelope in order to reconstruct the spectrum.

3.4. Feature-based maximum likelihood linear
regression (fMLLR)

Speaker adaptation in speech recognition refers to
the transformation process that is used to recognize the
speech of a new speaker who was not used during the
model’s training. Feature-based maximum likelihood
linear regression (fMLLR) is the process of performing
speaker adaptation by transforming the features of
speech so that a trained speech recognition model can be
applied to the new speaker [32]. In order to accomplish
this, a transformation matrix W is derived such that the
likelihood of a new speaker’s transformed speech data is
maximized. The transformation matrix W is expressed
as a concatenation of matrix A and a bias term b, as
shown in Eq. (3).

W = [ A b ] (3)

The feature vector x for the speech is processed into
ξ, as shown in Eq. (4). Finally, the transformed feature
vector x̂ is obtained using Eq. (5) [32].

ξ =

[
x
1

]
(4)

x̂ =W · ξ (5)

We transform the MFCC features of speech into
fMLLR features within the speaker-independent auto
speech recognition (SI-ASR) module in order to extract
normalized features for the speaker.

3.5. Fundamental frequency (F0) and
aperiodicity component (AC)

The fundamental frequency (F0) corresponds to
the lowest frequency among the frequencies with
periodicity in speech. When a voice is synthesized with
a converted F0, the pitch of the voice is also converted.
The aperiodicity component (AC) is a component that
does not display periodic properties when the signal
is analyzed in the frequency domain. This component
includes the complex properties of the voice.

3.6. Deep bidirectional long short-term
memory (DBLSTM)

In a basic RNN cell, the multiplication operation
is repeated as the time step increases. Therefore,
vanishing gradient or exploding gradient effects may
occur when backpropagation through time is conducted.
LSTM, one of the RNN model variants, does not exhibit
the repetitive effects of multiplication because the cell
state and the forget gate at the current time step are
element-wise multiplied and the cell state is transmitted
to the next time step.

Because the vanishing gradient and exploding
gradient effects do not occur in LSTM, it is more
suitable for learning long temporal dependencies. In
general, because a single utterance can be composed
of thousands of frames, it is appropriate to use LSTM,
rather than a basic RNN, for speech analysis.

Bidirectional LSTM is a model that uses the hidden
states of both forward and backward directional LSTM
in order to obtain features at the current time step. A
bidirectional LSTM model is more suitable for speech
analysis than a unidirectional LSTM model because the
acoustic features of speech are affected by bidirectional
context.

For the output yt at time step t, the relationship

4.2.1 Text extractor

4.2.2 Echo agent

4.1 Voice conversion network

4.2.3 WinSpeech gesture

4.2 Intu

Inferred 
MCEPs sequence

4.1.1. Training step

4.1.2. Inferring step

WAV file

…

* Real MCEPs sequence ( 1 , 2 , … ) from target speech

MCEPs sequence ( 1 , 2 ,… )

Error
=1

− 2

…

Trained DBLSTM model

∑

Figure 3. Overall structure of the voice customization model.
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between hft and hbt , which are the hidden states of
forward and backward directional LSTM, respectively,
satisfies:

yt =W f
o h

f
t +W b

oh
b
t + bo (6)

where W f
o is a linear transformation matrix for the

hidden state of forward directional LSTM andW b
o is the

same for backward directional LSTM. bo is a bias term.
DBLSTM is a structure that improves the complexity

of the model by stacking bidirectional LSTM into
several layers. At time step t, the input of the current
layer is the sum of the hidden states of the forward and
backward directional LSTM on the previous layer.

4. Implementation details

The overall structure of our model is presented in
Figure 3. We employed the echoing model, depicted in
Figure 4(a), for our experiments, using the minimum
number of modules required for an Intu voice output
process. In the model, when a user inputs speech
data through Intu’s microphone, the speech data are
converted into text data by Watson’s speech-to-text
(STT) service [33]. The text data are then converted
back into speech data in Intu’s voice by Watson’s TTS

service [7]. Finally, the speech data are converted
into the target speech by the VCN and output through
a speaker. The actual conversation model can be
implemented by replacing the echo agent with a dialog
agent, as depicted in Figure 4(b).

Because we focus on issues in the VCN when it is
adopted by Intu, we naı̈vely implemented VCN in an
external server and transferred speech data through a
simple file transfer protocol. When Intu communicates
with the VCN server to substitute output speech data,
Intu first stores the output speech data as an WAV file.
Next, Intu sends the file to the designated directory of
the VCN server. The VCN server then converts the input
speech file and returns it to Intu. Finally, Intu outputs the
converted speech through its speaker.

4.1. Voice conversion network

In this section, we discuss the process of training
SI-ASR in the development stage, the process of training
DBLSTM when it has received a sample of target speech
data from a user, and the process by which the VCN
converts Intu’s speech. The mechanism we use is the
same as that proposed in [13].

The VCN model consists of three stages, as shown

MCEP

TIMIT
corpus

Feature
extraction

MFCC

SI-ASR

DNNfMLLR
transformation PPP

Target
speech

Feature
extraction

MFCC

MCEP

SI-ASR
DBLSTM

PPP

Source 
speech

Feature
extraction

MFCC
SI-ASR DBLSTM

PPP

LogF0

AC

Linear
conversion

Vocoder
Target 
speech

fMLLRStage I

Stage II

(a) Training step

(b) Inferring step

Figure 5. Description of voice conversion network [13]. Dashed components are to be trained at that stage.
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in Figure 5. In stage 1, SI-ASR, which maps MFCCs of
speech to PPPs, is trained using the TIMIT [34] corpus.
In stage 2, DBLSTM, which maps PPPs to MCEPs
of the target speech, is trained using the target speech
sample. After training, the VCN uses the models learned
in the previous stages to convert speech into a new voice,
as shown in the inferring step.

All the input speech data in Figure 5 are sampled at a
rate of 16kHz in a mono channel. For speech processing,
we chose a window length of 25 ms and an overlapping
length of 5 ms [13].

4.1.1. Training step. SI-ASR, which is trained in
stage 1, extracts PPP features. First, Kaldi [35], a speech
recognition toolkit, extracts the MFCC features from the
TIMIT corpus. Next, the fMLLR transformation model
and DNN are trained in order. The structure of the
DNN is a four-layered feedforward neural network in
which the unit size of each hidden layer is 1024 and the
output is calculated by an additional softmax layer. The
dimensions of the MFCCs, fMLLR features, and PPPs
are 13, 40, and 134, respectively. In stage 2, DBLSTM
is trained using the PPPs from SI-ASR as input and the
MCEPs as labels. DBLSTM consists of four layers of
bidirectional LSTM. The MCEP features are extracted
by SPTK [31], which is a speech analysis toolkit. The
number of the units in the input layer is 134 and the
numbers of the hidden units in the four bidirectional
LSTM layers are 64, 64, 64, and 39, respectively. We
used the Adam optimizer algorithm with β1 = 0.9,
β2 = 0.999, and ε = 1e − 08. The cost function is
the summation of the L2-norms at all time steps.

4.1.2. Inferring step. Source speech is converted
into a sequence of PPPs by SI-ASR, then mapped into a
sequence of MCEPs by DBLSTM. Additionally, the F0,
AC and energy term of the MCEP features are extracted
from the source speech. We used STRAIGHT [36] for
F0 and AC extraction, and SPTK for MCEP extraction.
The MCEPs from DBLSTM and energy term of the
MCEPs from the source speech are concatenated and
converted into a spectrum using SPTK. AC is directly
extracted from the source speech. Finally, STRAIGHT
synthesizes the target speech from spectrum, linearly
converted log(F0), and AC.

4.2. Intu

In this section, we describe operating process of the
Intu modules that comprise the echoing model in detail.
We used Intu installed on a PC running Windows 10 for
our experiments.

4.2.1. Text extractor. The text extractor converts
wave data of type AudioData, sensed by an Intu device’s
microphone, into text data and registers the data in
the blackboard. When Intu begins operation, the text
extractor’s OnStart method is called. The OnStart
method receives sensor information for AudioData data
from the sensor manager. During this process, the
text extractor transmits the OnAddAudio method as
a call-back function to the sensor manager. The
OnAddAudio method takes a sensor object as an
argument and subscribes to the AudioData data from the
sensor. As a result, the text extractor is able to handle
all data of type AudioData. In order to communicate
with a sensor, the OnAddAudio method transmits the
OnAudioData method as a call-back function. In
the OnAudioData method, data of type AudioData is
accepted as an argument and transmitted to Watson’s
STT service. The text data from Watson’s STT service is
wrapped in a Text type and registered in the blackboard.

4.2.2. Echo agent. The echo agent is a module that
converts data from type Text into type Say, which
is subscribed by WinSpeech gesture. Although the
model simply returns a user’s speech in Intu’s voice, the
contents of the input and output speech should be treated
differently in practice. First, the echo agent subscribes to
Text data from the blackboard using an OnStart method.
During this process, the echo agent sends an OnEcho
method to the blackboard as a call-back function. When
the OnEcho method is called, it extracts the Text data
from the argument. The OnEcho method then wraps the
data as Say type and registers it in the blackboard.

4.2.3. WinSpeech gesture. As a default, a speech
gesture exists in Intu to output speech. We overrode the
class with WinSpeech gesture for Windows OS. When
Say data is registered in the blackboard, the StartSpeech,
OnSpeechData, and PlayStreamedSound methods are
called in order to process the data. The StartSpeech
method internally calls Watson’s TTS service to convert
text data into wave data. It then transmits the
OnSpeechData method as a call-back function. The
OnSpeechData method takes the converted wave data
as an argument. It then pauses the data stream
that the WinSpeech gesture manages and sensors for
AudioData data. Within the OnSpeechData method,
the PlayStreamedSound method is transmitted to the
ThreadPool instance in order to play stored wave data on
a thread. In the PlayStreamedSound method, streamed
sound stored in the WinSpeech gesture is replaced with
converted speech data through communication with the
VCN server. This routine is terminated when the
converted speech data are played over the speaker by
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the PlayStreamedSound method.

5. Results and discussion

We designed experiments to simulate real service
situations. We measured the elapsed time for VCN
processing and found the proper amount of target speech
data for training DBLSTM.

In order to calculate the delay time from a user’s
point of view, the time consumed by Intu should also
be considered. However, it is difficult to generalize the
real circumstances because the developers may include
various extra process routines when customizing Intu’s
structure. Therefore, we measured only the additional
time consumed by VCN, excluding the time required to
communicate with Intu.

In order to find the proper amount of data for training
DBLSTM, mel-cepstral distortion (MCD) was used as a

metric to evaluate voice conversion performance. We
fed target speech into VCN and then measured the
MCEP differences between the input and output speech.
The formula for MCD is:

MCD(dB) =
10

ln 10

√√√√2

D∑
d=1

(
cd − cconvertedd

)2
(7)

where cd is the d-th element of the MCEP label used for
DBLSTM training and cconvertedd is the d-th element of
the output of DBLSTM. We excluded the energy term in
this calculation.

5.1. Voice conversion time measurement

We divided the entire process into three steps: (1)
PPP feature extraction by SI-ASR, (2) MCEP feature
extraction by DBLSTM and (3) speech synthesis by
the STRAIGHT vocoder. We then measured the time
required for each step. The results are presented in
Figure 6(a).

The total elapsed time for voice conversion is
close to a minute. The most time-consuming part
is the process of extracting the F0 feature using the
STRAIGHT vocoder in step three, which accounts for
54.9% of the total time. The entire feature extraction
process accounts for 59.7% of the total time, meaning
that the time delay due to feature extraction should be
focused on first. Additionally, the time required for
loading the Matlab engine to run the STRAIGHT script
in step three and performing the DBLSTM inference
in step two account for 14.8% and 9% of the total
time, respectively. The remaining processes account for
16.5% of the total time.

5.2. Size of the DBLSTM training set

The CMU ARCTIC [37] corpus was used as the
training dataset for DBLSTM. A US female speaker
called SLT was adopted from the corpus as the target
voice. The version number of the corpus is 0.95. We
set the number of speech samples for the target voice to
30, 60, 100, and 200 for DBLSTM training. The sizes
of the mini-batches during training were 10, 10, 25, and
50, respectively. The learning rates were all set to 0.001.
The training processes for SI-ASR are the same.

We measured the average MCD between MCEPs,
one of which was extracted directly from the target
speech, while the other was the output of DBLSTM
using the same target speech as input. The graphs
in Figures 6(b) and 6(c) plot the average MCD
measurement against the size of the training set.
DBLSTM was implemented in Tensorflow. An NVIDIA
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Titan X Pascal was used for processing the neural
network.

Figure 6(b) plots the average MCD measurements
for different sizes of training sets against the number
of epochs used for training. As the number of epochs
increases, the average MCD is lower when the size of
the training set is 30 or 60 than when it is 100 or 200.
In contrast, the graph in Figure 6(c) plots the results
of the same experiment when using a validation set for
MCD estimation. The average MCD for the training set
sizes of 30 and 60 decreases and then increases again
as the number of epochs increases. Overall, the general
performance degrades when the size of the training set
is 30 or 60. However, when DBLSTM is trained with
100 or more data samples, the average MCD for the
validation set tends to decrease as the number of epochs
increases.

5.3. Discussion

Through the experiment described in section 5.1, we
analyzed how to minimize the time delay in order to
facilitate commercialization of our voice customization
service. The first method is to remove unnecessary time
delays. For instance, the percentage of time required
for loading the Matlab engine was 14.8%. This can be
removed because the Matlab code of the STRAIGHT
vocoder can also be implemented in python, preventing
the unnecessary loading of a separate engine.

Additionally, steps one and two can be performed
independently of the process for extracting features from
the source speech in step three. If the two processes are
performed in parallel, the time required to complete both
is reduced to that of the longer of the two. In our case,
the two processes account for 26.1% and 72.6% of the
total time, meaning the total time can be reduced from
98.7% to 72.6% of the total time.

The final method is based on the fact that IBM’s TTS
model stores the acoustic units of the source speech in
a database [7]. PPP, F0, MCEP, and AC can all be
extracted and stored in the database for the model in
advance. Watson’s TTS server then returns frame-wise
acoustic features corresponding to the input text. This
means that, in the VCN, there is no need for step one or
the feature extractions in other steps during the inference
stage.

If all of these methods are successfully applied, the
expected total time would be reduced to approximately
10 seconds. We expect that any other optimizations
in computation and pipelining will further reduce
processing time.

Based on our experiments, we conclude that it is
appropriate to ask a user for more than 100 speech data

samples for the target voice. When we consider the
dataset we used in the experiments, the total duration
of speech that the user must prepare would be less than
10 min for 100 utterances.

6. Conclusion

In this study, we proposed a voice customization
service as a method of enhancing the user experience
with IBM Project Intu, which is an intelligent personal
assistant service based on IoT. Our model combines
a conventional TTS model with the voice conversion
model proposed in [13] in order to reduce the burden of
preparing training data. From our experimental results,
we determined which parts of the process consume the
most time and the quantity of target speech samples
required to perform the voice customization. We
also discussed areas for improvement and methods to
optimize the performance of the voice customization
service. We expect that our research will provide an
excellent basis for voice customization in intelligent
personal assistant services.
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