786 research outputs found

    Nucleus-Nucleus Bremsstrahlung from Ultrarelativistic Collisions

    Get PDF
    The bremsstrahlung produced when heavy nuclei collide is estimated for central collisions at the Relativistic Heavy Ion Collider. Soft photons can be used to infer the rapidity distribution of the outgoing charge. An experimental design is outlined.Comment: 12 pages, 7 figures, uses revte

    Observing Spontaneous Strong Parity Violation in Heavy-Ion Collisions

    Get PDF
    We discuss the problem of observing spontaneous parity and CP violation in collision systems. We discuss and propose observables which may be used in heavy-ion collisions to observe such violations, as well as event-by-event methods to analyze the data. Finally, we discuss simple monte-carlo models of these CP violating effects which we have used to develop our techniques and from which we derive rough estimates of sensitivities to signals which may be seen at RHIC

    Search for stable Strange Quark Matter in lunar soil

    Full text link
    We report results from a search for strangelets (small chunks of Strange Quark Matter) in lunar soil using the Yale WNSL accelerator as a mass spectrometer. We have searched over a range in mass from A=42 to A=70 amu for nuclear charges 5, 6, 8, 9, and 11. No strangelets were found in the experiment. For strangelets with nuclear charge 8, a concentration in lunar soil higher than 101610^{-16} is excluded at the 95% confidence level. The implied limit on the strangelet flux in cosmic rays is the most sensitive to date for the covered range and is relevant to both recent theoretical flux predictions and a strangelet candidate event found by the AMS-01 experiment.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Measurements of Light Nuclei Production in 11.5 A GeV/c Au+Pb Heavy-Ion Collisions

    Full text link
    We report on measurements by the E864 experiment at the BNL-AGS of the yields of light nuclei in collisions of Au(197) with beam momentum of 11.5 A GeV/c on targets of Pb(208) and Pt(197). The yields are reported for nuclei with baryon number A=1 up to A=7, and typically cover a rapidity range from y(cm) to y(cm)+1 and a transverse momentum range of approximately 0.1 < p(T)/A < 0.5 GeV/c. We calculate coalescence scale factors B(A) from which we extract model dependent source dimensions and collective flow velocities. We also examine the dependences of the yields on baryon number, spin, and isospin of the produced nuclei.Comment: 21 figures-to be published in Phys. Rev.

    Antideuteron yield at the AGS and coalescence implications

    Full text link
    We present Experiment 864's measurement of invariant antideuteron yields in 11.5A GeV/c Au + Pt collisions. The analysis includes 250 million triggers representing 14 billion 10% central interactions sampled for events with high mass candidates. We find (1/2 pi pt) d^(2)N/dydpt = 3.5 +/- 1.5 (stat.) +0.9,-0.5 (sys.) x 10^(-8) GeV^(-2)c^(2) for 1.8=0.35 GeV/c (y(cm)=1.6) and 3.7 +/- 2.7 (stat.) +1.4,-1.5 (sys.) x 10^(-8) GeV^(-2)c^(2) for 1.4=0.26 GeV/c, and a coalescence parameter B2-bar of 4.1 +/- 2.9 (stat.) +2.3,-2.4 (sys.) x 10^(-3) GeV^(2)c^(-3). Implications for the coalescence model and antimatter annihilation are discussed.Comment: 8 pages, 4 figures, Latex, submitted to Phys. Rev. Let

    Mass dependence of light nucleus production in ultrarelativistic heavy ion collisions

    Full text link
    Light nuclei can be produced in the central reaction zone via coalescence in relativistic heavy ion collisions. E864 at BNL has measured the production of ten light nuclei with nuclear number of A=1 to A=7 at rapidity y1.9y\simeq1.9 and pT/A300MeV/cp_{T}/A\leq300MeV/c. Data were taken with a Au beam of momentum of 11.5 A GeV/cGeV/c on a Pb or Pt target with different experimental settings. The invariant yields show a striking exponential dependence on nuclear number with a penalty factor of about 50 per additional nucleon. Detailed analysis reveals that the production may depend on the spin factor of the nucleus and the nuclear binding energy as well.Comment: (6 pages, 3 figures), some changes on text, references and figures' lettering. To be published in PRL (13Dec1999

    Event Reconstruction in the PHENIX Central Arm Spectrometers

    Full text link
    The central arm spectrometers for the PHENIX experiment at the Relativistic Heavy Ion Collider have been designed for the optimization of particle identification in relativistic heavy ion collisions. The spectrometers present a challenging environment for event reconstruction due to a very high track multiplicity in a complicated, focusing, magnetic field. In order to meet this challenge, nine distinct detector types are integrated for charged particle tracking, momentum reconstruction, and particle identification. The techniques which have been developed for the task of event reconstruction are described.Comment: Accepted for publication in Nucl. Instrum. A. 34 pages, 23 figure

    Search for Exotic Strange Quark Matter in High Energy Nuclear Reactions

    Full text link
    We report on a search for metastable positively and negatively charged states of strange quark matter in Au+Pb reactions at 11.6 A GeV/c in experiment E864. We have sampled approximately six billion 10% most central Au+Pb interactions and have observed no strangelet states (baryon number A < 100 droplets of strange quark matter). We thus set upper limits on the production of these exotic states at the level of 1-6 x 10^{-8} per central collision. These limits are the best and most model independent for this colliding system. We discuss the implications of our results on strangelet production mechanisms, and also on the stability question of strange quark matter.Comment: 21 pages, 9 figures, to be published in Nuclear Physics A (Carl Dover memorial edition

    Antiproton Production in 11.5 A GeV/c Au+Pb Nucleus-Nucleus Collisions

    Full text link
    We present the first results from the E864 collaboration on the production of antiprotons in 10% central 11.5 A GeV/c Au+Pb nucleus collisions at the Brookhaven AGS. We report invariant multiplicities for antiproton production in the kinematic region 1.4<y<2.2 and 50<p_T<300 MeV/c, and compare our data with a first collision scaling model and previously published results from the E878 collaboration. The differences between the E864 and E878 antiproton measurements and the implications for antihyperon production are discussed.Comment: 4 pages, 4 figures; accepted for publication in Physical Review Letter
    corecore