276 research outputs found

    GaAs(111)A and B in hydrazine sulfide solutions : extreme polarity dependence of surface adsorption processes

    Full text link
    Chemical bonds formed by hydrazine-sulfide treatment of GaAs(111) were studied by synchrotron photoemission spectroscopy. At the B surface, the top arsenic atoms are replaced by nitrogen atoms, while GaAs(111)A is covered by sulfur, also bonded to underlying gallium, despite the sulfide molar concentration being 103 times smaller than that of the hydrazine. This extreme dependence on surface polarity is explained by competitive adsorption processes of HS- and OH- anions and of hydrazine molecules, on Ga- adsorption sites, which have distinct configurations on the A and B surfaces

    Cs-induced charge transfer on (2x4)-GaAs(001) studied by photoemission

    Full text link
    Cesium adsorption on 2x4 GaAs (001) was studied by photoemission and low energy electron diffraction. The different Cs induced changes of the As 3d and Ga 3d core level spectra show that charge transfer is almost complete for Ga surface sites, but is negligible to surface As at a coverage smaller than 0.3 ML. The situation is opposite for a coverage larger than 0.3ML, at which transfer occurs to As but no longer to Ga. Charge transfer to As atoms leads to disordering and destabilization and induces surface conversion from the As-rich surface to the Ga-rich 4x2 one after annealing at a reduced temperature of 450 C

    Sustainable water use for rice agro-ecosystems in northern Italy

    Get PDF
    I n the Mediterranean basin, rice is cultivated over an area of 1,300,000 hectares. The most important rice-producing countries are Italy and Spain in Europe (72% of the EU production; 345,000 ha), and Egypt and Turkey among the extra-EU countries (almost totality of the production; 789,000 ha). Traditionally, rice is grown under continuous flooding; thus, it requires much more irrigation than non-ponded crops. The MEDWATERICE project (PRIMA-Section 2-2018; https://www.medwaterice.org/) aims at exploring sustainability of innovative rice irrigation management solutions, in order to reduce rice water consumption and environmental impacts, and to extend rice cultivation outside of traditional paddy areas to meet the escalating demand. Within the MEDWATERICE project, irrigation management options to address the main site-specific problems are being tested for each rice areas involved in the project (IT, ES, PT, EG, TR). Case studies are being conducted in pilot farms, with the involvement of Stake-Holder Panels (SHPs) in each country. Data collected at the farm level will be extrapolated to the irrigation district level, to support water management decisions and policies. Moreover, indicators for quantitative assessment of environmental, economic and social sustainability of the irrigation options will be defined. This work illustrates the first year of results for the Italian Case Study (Lomellina area, Pavia) at the pilot farm scale. This area is characterized by a growing water scarcity in drought years in many districts. Within the farm managed by the National Rice Research Center (CRR), in the agricultural season 2019 the experimentation was conducted in six plots of about 20 m x 80 m each, with two replicates for each of the following water regimes: i) water-seeded rice with continuous flooding (WFL), ii) dry-seeded rice with continuous flooding from the 3-4 leaf stage (DFL), and iii) water seeded-rice with alternate wetting and drying from fertilization at the tillering stage (AWD). One out of the two replicates of each treatment was instrumented with: water inflow and outflow meters, set of piezometers, set of tensiometers and water tubes for the irrigation management in the AWD plots. A soil survey was conducted before the agricultural season (EMI sensor and physico-chemical analysis of soil samples). Periodic measurements of crop biometric parameters (LAI, crop height, crop rooting depth) were performed. Moreover, nutrients (TN, NO3, PO4, K) and two widely used pesticides (Sirtaki \u2013 a.i. Clomazone; Tripion E \u2013 a.i. MCPA) were measured in irrigation water (inflow and outflow), groundwater, and porous cups installed at two soil depths (20 and 70 cm, above and below the plough pan). Finally, rice grain yields and quality (As and Cd in the grain) were determined. First results in terms of cumulative water balance components (rainfall, irrigation inflow and outflow, difference in soil and ponding water storage, evapotranspiration, net percolation), water application efficiency (evapotranspiration over net water input), and water productivity (grain production over net water input), will be presented and discussed. Results of a 1D Richard-equation-based numerical simulation model applied to generalize results obtained under the different irrigation regimes will be moreover illustrated

    Intra-articular administration of lidocaine plus adrenaline in dogs : pharmacokinetic profile and evaluation of toxicity in vivo and in vitro

    Get PDF
    The aim of this study was to evaluate the safety of intra-articular (IA) lidocaine plus adrenaline for improving peri-operative analgesia in anaesthetised dogs undergoing arthroscopy of the elbow. A solution of lidocaine (L) 1.98% plus adrenaline 1:100.000 was administered via the IA route and its safety evaluated in terms of cardio- neuro- and chondro-toxicity. No bradycardia or hypotension was recorded from induction to the last observational time point. Signs of toxicity of the nervous system could have been masked by the general anaesthesia but lidocaine concentrations detected in the blood were lower than those thought to be capable of producing toxicity. The assessment of in vitro chondrotoxicity showed a dose- and time-dependent effect of lidocaine on the viability of articular cells. Adrenaline appeared to reduce the chondrotoxicity of 1% lidocaine, following an exposure of up to 30 min

    Can Thermoclines Be a Cue to Prey Distribution for Marine Top Predators? A Case Study with Little Penguins

    Get PDF
    The use of top predators as bio-platforms is a modern approach to understanding how physical changes in the environment may influence their foraging success. This study examined if the presence of thermoclines could be a reliable signal of resource availability for a marine top predator, the little penguin (Eudyptula minor). We studied weekly foraging activity of 43 breeding individual penguins equipped with accelerometers. These loggers also recorded water temperature, which we used to detect changes in thermal characteristics of their foraging zone over 5 weeks during the penguin’s guard phase. Data showed the thermocline was detected in the first 3 weeks of the study, which coincided with higher foraging efficiency. When a thermocline was not detected in the last two weeks, foraging efficiency decreased as well. We suggest that thermoclines can represent temporary markers of enhanced food availability for this top-predator to which they must optimally adjust their breeding cycle

    Water balance implications of switching from continuous submergence to flush irrigation in a rice-growing district

    Get PDF
    Studies conducted at the field scale report significant reductions in the irrigation requirements of ricewhen continuous submergence (CS) is replaced by less water-demanding regimes such as flush-irrigation(FI, i.e. intermittent irrigations of rice growing in non-submerged soils). However, the effects of theirextensive application in paddy areas with shallow groundwater is much less studied. We present a sce-nario analysis investigating the impacts on irrigation requirements induced by a shift from CS to FI inan irrigation district of Northern Italy where rice is the main crop, followed by maize and poplar. Thearea is characterised by a shallow water Table whose depth fluctuates between two meters (in winter)and less than 1 m (in summer). We applied a three-stage procedure, where we first analysed presentstate conditions using the SWAP (Soil, Water, Atmosphere, Plant) model to simulate irrigation deliver-ies and percolation fluxes. Then, we calibrated an empirical relationship between estimated percolationfluxes and measured depths to groundwater. Finally, we applied this relationship, in combination withthe SWAP model, to predict the variation of district irrigation requirements due to a widespread shiftfrom CS to FI. Results show that neglecting the feedback between groundwater recharge due to irrigationand groundwater depth led to overestimating the reduction of irrigation requirements of rice, whichdecreased from around 80% when no feedback was considered to around 60% when it was accountedfor. Moreover, increased groundwater depths resulted in higher irrigation requirements for maize withan estimated growth of more than 50% due to the need of shortening the irrigation turn. These resultsdemonstrate the importance of considering the impacts on the hydrological processes at larger scaleswhen planning the conversion of CS into more efficient field irrigation methods
    • …
    corecore