23 research outputs found

    Mitochondrial Targeting of Doxorubicin Eliminates Nuclear Effects Associated with Cardiotoxicity

    Get PDF
    The highly effective anticancer agent doxorubicin (Dox) is a frontline drug used to treat a number of cancers. While Dox has a high level of activity against cancer cells, its clinical use is often complicated by dose-limiting cardiotoxicity. While this side effect has been linked to the drug’s direct activity in the mitochondria of cardiac cells, recent studies have shown that these result primarily from downstream effects of nuclear DNA damage. Our lab has developed a mitochondrially targeted derivative of Dox that enables the selective study of toxicity generated by the presence of Dox in the mitochondria of human cells. We demonstrate that mitochondria-targeted doxorubicin (mtDox) lacks any direct nuclear effects in H9c2 rat cardiomyocytes, and that these cells are able to undergo mitochondrial biogenesis. This recovery response compensates for the mitotoxic effects of Dox and prevents cell death in cardiomyocytes. Furthermore, cardiac toxicity was only observed in Dox but not mtDox treated mice. This study supports the hypothesis that mitochondrial damage is not the main source of the cardiotoxic effects of Dox

    An Autocrine Cytokine/JAK/STAT-Signaling Induces Kynurenine Synthesis in Multidrug Resistant Human Cancer Cells

    Get PDF
    <div><p>Background</p><p>Multidrug resistant cancer cells are hard to eradicate for the inefficacy of conventional anticancer drugs. Besides escaping the cytotoxic effects of chemotherapy, they also bypass the pro-immunogenic effects induced by anticancer drugs: indeed they are not well recognized by host dendritic cells and do not elicit a durable anti-tumor immunity. It has not yet been investigated whether multidrug resistant cells have a different ability to induce immunosuppression than chemosensitive ones. We addressed this issue in human and murine chemosensitive and multidrug resistant cancer cells.</p><p>Results</p><p>We found that the activity and expression of indoleamine 2,3-dioxygenase 1 (IDO1), which catalyzes the conversion of tryptophan into the immunosuppressive metabolite kynurenine, was higher in all the multidrug resistant cells analyzed and that IDO1 inhibition reduced the growth of drug-resistant tumors in immunocompetent animals. In chemoresistant cells the basal activity of JAK1/STAT1 and JAK1/STAT3 signaling was higher, the STAT3 inhibitor PIAS3 was down-regulated, and the autocrine production of STAT3-target and IDO1-inducers cytokines IL-6, IL-4, IL-1β, IL-13, TNF-α and CD40L, was increased. The disruption of the JAK/STAT signaling lowered the IDO1 activity and reversed the kynurenine-induced pro-immunosuppressive effects, as revealed by the restored proliferation of T-lymphocytes in STAT-silenced chemoresistant cells.</p><p>Conclusions</p><p>Our work shows that multidrug resistant cells have a stronger immunosuppressive attitude than chemosensitive cells, due to the constitutive activation of the JAK/STAT/IDO1 axis, thus resulting chemo- and immune-evasive. Disrupting this axis may significantly improve the efficacy of chemo-immunotherapy protocols against resistant tumors.</p></div

    Presentation_1_Mitochondrial Delivery of Phenol Substructure Triggers Mitochondrial Depolarization and Apoptosis of Cancer Cells.pdf

    No full text
    <p>Antitumor chemotherapy remains one of the most important challenge of the medicinal chemistry. Emerging research in chemotherapy is focused on exploiting the biochemical differences between cancer cell and normal cell metabolism in order to reduce the side effects and increase antitumor therapy efficacy. The higher mitochondrial transmembrane potential of cancer cells compared to not-transformed cells favors the intra-mitochondrial accumulation of cationic drugs in the former. This feature could be exploited to allow selective delivery of antineoplastic drugs to the cancer cells. In this work we designed and synthetized phenol derivatives joined to the triphenylphosphonium (TPP) cation, a well-known vector for mitochondrial targeting. Two designed phenol TPP-derivatives 1 and 2 show remarkable cytotoxic activity against different cancer cell lines, but were less toxic against normal cells. The differential cytotoxicity relied on the higher mitochondrial biogenesis and oxidative-phosphorylation metabolism of the former. By reducing mitochondrial mass and energetic metabolism, and increasing at the same time the levels of intra-mitochondrial reactive oxygen species, phenol TPP-derivatives 1 and 2 induced mitochondria depolarization and triggered a caspase 9/3-mediated apoptosis, limited to cancer cells. This work provides the rationale to further develop phenol TPP-derivatives targeting mitochondria as new and selective anticancer tools.</p

    Effects of IDO1 inhibition on the growth of multidrug resistant tumors.

    No full text
    <p><b>A</b>. 1 x 10<sup>5</sup> human A549, A549/dx, HT29, HT29/dx cells were implanted subcutaneously in 6–8 weeks old female nude BALB/c mice, 1 x 10<sup>5</sup> murine JC cells were implanted in immunocompetent BALB/c mice. Tumor growth was monitored daily by caliper measurement. Data are presented as means ± SD of 10 mice/group. * p < 0.02, ** p < 0.005, *** p < 0.001: A549/dx or HT29/dx cells versus A549 or HT29 cells, at the corresponding time points. <b>B</b>. Animals bearing A549/dx-, HT29/dx-, JC-tumors were randomized into two groups when tumors reached the volume of 100 mm<sup>3</sup>: “Control” group (treated with 100 μL of saline solution <i>per os</i>, 5 days/week for three weeks; CTRL); “Brassinin” group (treated with 400 mg/kg of the IDO1 inhibitor 5-Br-brassinin <i>per os</i>, 5 days/week for three weeks; BRA). Tumor growth was monitored daily by caliper measurement. Data are presented as means ± SD of 6 mice/group. ** p < 0.005: BRA-group versus CTRL-group, at the corresponding time points.</p

    The inhibition of the STAT1/STAT3 signaling reverses the kynurenine-dependent immunosuppression in multidrug resistant cells.

    No full text
    <p>A549/dx cells were grown for 48 h in fresh medium (CTRL), treated with a non-targeting scrambled siRNA (scr) or with a specific siRNAs pool targeting STAT1 or STAT3, respectively (si STAT1, si STAT3). Untreated chemosensitive A549 cells were used as control. <b>A</b>. The expression of STAT1, STAT3, IDO1, IDO2 and TDO was measured in whole cell lysates by Western blotting, 48 h after the transfection. The β-tubulin expression was used as control of equal protein loading. The figure is representative of 3 experiments with similar results. <b>B</b>. The kynurenine levels in the cell culture supernatants were measured spectrophotometrically. Data are presented as means ± SD (n = 4). * p < 0.01: versus A549 CTRL; ° p < 0.005, °° p < 0.001: versus A549/dx CTRL. <b>C</b>. The proliferation of activated T-lymphocytes collected from PBMC after a 72 h co-incubation with A549 and A549/dx cells was measured with the [<sup>3</sup>H]thymidine assay. In the presence of anti-CD3 and anti-CD28 stimulatory antibodies without tumor cells (positive control), the [<sup>3</sup>H]thymidine incorporation was 28,926 ± 1,426 cpm; in the presence of RPMI medium alone (negative control), the [<sup>3</sup>H]thymidine incorporation was 4,312 ± 529 cpm. Data are presented as means ± SD (n = 6). * p < 0.05: versus A549 CTRL; ° p < 0.01, °° p < 0.005: versus A549/dx CTRL. <b>D</b>. The percentage of CD3<sup>+</sup> T-lymphocytes collected from PBMC, co-incubated with tumor cells as reported in <b>C</b>, was measured by flow cytometry. Data are presented as means ± SD (n = 6). * p < 0.01: versus A549 CTRL; ° p < 0.01, °° p < 0.002: versus A549/dx CTRL.</p

    Kynurenine production and IDO1 expression in chemosensitive and multidrug resistant cells.

    No full text
    <p>Human chemosensitive lung cancer A549 cells and chemoresistant A549/dx cells, human chemosensitive colon cancer HT29 cells and chemoresistant HT29/dx cells, human chemosensitive chronic myelogenous leukemia K562 cells and chemoresistant K562/dx cells, human chemosensitive mesothelial Met5A cells and human chemoresistant malignant mesothelioma HMM cells, murine chemoresistant mammary JC cells were subjected to the following investigations. <b>A</b>. The kynurenine levels in the cell culture supernatants were measured spectrophotometrically. Data are presented as means ± SD (n = 4). * p < 0.05, ** p < 0.01, *** p < 0.001: chemoresistant cells (MDR-positive) versus the corresponding chemosensitive (MDR-negative) cells. <b>B</b>. Western blot analysis of IDO1, IDO2 and TDO expression. The β-tubulin expression was used as control of equal protein loading. The figure is representative of 3 experiments with similar results. <b>C</b>. The expression level of <i>IDO1</i> mRNA was measured by qRT-PCR. Data are presented as means ± SD (n = 4). * p < 0.01, ** p < 0.002: chemoresistant cells (MDR-positive) versus the corresponding chemosensitive (MDR-negative) cells.</p

    Effects of IFN-γ on kynurenine synthesis and IDO1 expression in chemosensitive and multidrug resistant cells.

    No full text
    <p>A549 and A549/dx cells were incubated for 48 h in fresh medium (CTRL) or in medium containing the IDO1 inhibitors methyl-DL-tryptophan (1 mmol/L, mTrp) or 5-Br-brassinin (100 μmol/L, BRA), and the IDO1 inducer IFN-γ (100 ng/mL, IFNγ), alone or in combination. <b>A</b>. The kynurenine levels in the cell culture supernatants were measured spectrophotometrically. Data are presented as means ± SD (n = 4). * p < 0.01: versus A549 CTRL cells; °°° p < 0.001: versus A549/dx CTRL; <sup>◊◊</sup> p < 0.005: IFN-γ + mTrp-treated, IFN-γ + BRA-treated A549 and A549/dx cells versus the corresponding cells treated with IFN-γ alone. <b>B</b>. The expression level of <i>IDO1</i> mRNA was measured by qRT-PCR. Data are presented as means ± SD (n = 4). *** p < 0.001: versus A549 CTRL cells; °°° p < 0.001: versus A549/dx CTRL cells. <b>C</b>. Western blot analysis of IDO1 expression. The β-tubulin expression was used as control of equal protein loading. The figure is representative of 3 experiments with similar results.</p

    Multidrug resistant cells have a higher activity of JAK/STAT signaling than chemosensitive cells.

    No full text
    <p>A. The cDNA from A549 and A549/dx cells was analyzed by a PCR array specific for JAK/STAT signaling, as reported under Materials and methods. The fold regulation of the 83 genes analyzed, expressed in logarithmic scale, is represented in a colorimetric scale. The figure is the mean of 4 experiments. B. The cells were lysed and subjected to the Western blot analysis for phospho(Tyr 1022/1023)-JAK1, JAK1, phospho(Tyr701)-STAT1, STAT1, phospho(Tyr705)-STAT3, STAT3. The β-tubulin expression was used as control of equal protein loading. The figure is representative of 3 experiments with similar results. C. The expression of PIAS1, PIAS3, phospho(Tyr701)-STAT1, STAT1, phospho(Tyr705)-STAT3, STAT3 in nuclear extracts was measured by Western blotting. The TBP expression was used as control of equal protein loading. The figure is representative of 3 experiments with similar results.</p

    Multidrug resistant cells have a higher activity of IL-6/STAT3 signaling than chemosensitive cells.

    No full text
    <p>A. The cDNA from A549 and A549/dx cells was analyzed by a PCR array specific for IL-6/STAT3 signaling, as reported under Materials and methods. The fold regulation of the 83 genes analyzed, expressed in logarithmic scale, was represented in a colorimetric scale. The figure is the mean of 4 experiments. B. The levels of IL-6, IL-4, IL-1β, IL-13, CD40L, IFN-γ were measured in the cell culture supernatants by specific ELISAs. Data are presented as means ± SD (n = 3). * p < 0.02, ** p < 0.005, *** p < 0.001: A549/dx cells versus A549 cells.</p
    corecore