101 research outputs found
Cold Atom Physics Using Ultra-Thin Optical Fibers: Light-Induced Dipole Forces and Surface Interactions
The strong evanescent field around ultra-thin unclad optical fibers bears a
high potential for detecting, trapping, and manipulating cold atoms.
Introducing such a fiber into a cold atom cloud, we investigate the interaction
of a small number of cold Caesium atoms with the guided fiber mode and with the
fiber surface. Using high resolution spectroscopy, we observe and analyze
light-induced dipole forces, van der Waals interaction, and a significant
enhancement of the spontaneous emission rate of the atoms. The latter can be
assigned to the modification of the vacuum modes by the fiber.Comment: 4 pages, 4 figure
Implementation of a Standardized Handoff System for a General Surgery Residency Program
Introduction:
The I-PASS Handoff Bundle is an evidence based standardized set of educational materials designed to decrease handoff failures in patient care.
Two of every three sentinel events , the most serious events reported to the Joint Commission, are due to failures of communication, including miscommunication during patient care handoffs.
Implementation of the I-PASS method results in decreased medical errors and preventable adverse events
There are few studies that evaluate this validated method in the context of a General Surgery resident program
We aim to implement the I-PASS system into the transition of care process for General Surgery residents at our institution, and to analyze of the quality of the handoff process before and after the implementation.https://jdc.jefferson.edu/patientsafetyposters/1047/thumbnail.jp
Selective Reflection Spectroscopy on the UV Third Resonance Line of Cs : Simultaneous Probing of a van der Waals Atom-Surface Interaction Sensitive to Far IR Couplings and of Interatomic Collisions
We report on the analysis of FM selective reflection experiments on the
6S1/2->8P3/2 transition of Cs at 388 nm, and on the measurement of the surface
van der Waals interaction exerted by a sapphire interface on Cs(8P3/2). Various
improvements in the systematic fitting of the experiments have permitted to
supersede the major difficulty of a severe overlap of the hyperfine components,
originating on the one hand in a relatively small natural structure, and on the
other hand on a large pressure broadening imposed by the high atomic density
needed for the observation of selective reflection on a weak transition. The
strength of the van der Waals surface interaction is evaluated to be 7310
kHz.m3. An evaluation of the pressure shift of the transition is also
provided as a by-product of the measurement. We finally discuss the
significance of an apparent disagreement between the experimental measurement
of the surface interaction, and the theoretical value calculated for an
electromagnetic vacuum at a null temperature. The possible influence of the
thermal excitation of the surface is evoked, because, the dominant
contributions to the vW interaction for Cs(8P3/2) lie in the far infrared
range.Comment: submitted to Laser Physics - issue in the memory of Herbert Walther
Light absorption and albedo reduction by pigmented microalgae on snow and ice
Pigmented microalgae inhabiting snow and ice environments lower the albedo of glacier and ice-sheet surfaces, significantly enhancing surface melt. Our ability to accurately predict their role in glacier and ice-sheet surface mass balance is limited by the current lack of empirical data to constrain their representation in predictive models. Here we present new empirical optical properties for snow and ice algae and incorporate them in a radiative transfer model to investigate their impact on snow and ice surface albedo. We found ice algal cells to be more efficient absorbers than snow algal cells, but their blooms had comparable impact on surface albedo due to the different photic conditions of their habitats. We then used the model to reconstruct the effect of ice algae on bare ice albedo spectra collected at our field site in southern Greenland, where blooms dropped the albedo locally by between 3 and 43%, equivalent to 1-10 L m(-2) d(-1) of melted ice. Using the newly parametrized model, future studies could investigate biological albedo reduction and algal quantification from remote hyperspectral and multispectral imagery
Selective Reflection Spectroscopy at the Interface between a Calcium Fluoride Window and Cs Vapour
A special vapour cell has been built, that allows the measurement of the
atom-surface van der Waals interaction exerted by a CaF2 window at the
interface with Cs vapour. Mechanical and thermal fragility of fluoride windows
make common designs of vapour cells unpractical, so that we have developed an
all-sapphire sealed cell with an internal CaF2 window. Although impurities were
accidentally introduced when filling-up the prototype cell, leading to a
line-broadening and shift, the selective reflection spectrum on the Cs D1 line
(894 nm) makes apparent the weak van der Waals surface interaction. The
uncertainties introduced by the effects of these impurities in the van der
Waals measurement are nearly eliminated when comparing the selective reflection
signal at the CaF2 interface of interest, and at a sapphire window of the same
cell. The ratio of the interaction respectively exerted by a sapphire interface
and a CaF2 interface is found to be 0.55 0.25, in good agreement with the
theoretical evaluation of ~0.67.Comment: soumis \`a Appl Phys B MS 4734
Observation of modified radiative properties of cold atoms in vacuum near a dielectric surface
We have observed a distance-dependent absorption linewidth of cold Rb
atoms close to a dielectric-vacuum interface. This is the first observation of
modified radiative properties in vacuum near a dielectric surface. A cloud of
cold atoms was created using a magneto-optical trap (MOT) and optical molasses
cooling. Evanescent waves (EW) were used to observe the behavior of the atoms
near the surface. We observed an increase of the absorption linewidth with up
to 25% with respect to the free-space value. Approximately half the broadening
can be explained by cavity-quantum electrodynamics (CQED) as an increase of the
natural linewidth and inhomogeneous broadening. The remainder we attribute to
local Stark shifts near the surface. By varying the characteristic EW length we
have observed a distance dependence characteristic for CQED.Comment: 6 pages, 6 figures, some minor revision
Dark ice in a warming world: advances and challenges in the study of Greenland Ice Sheet's biological darkening
The surface of the Greenland Ice Sheet is darkening, which accelerates its surface melt. The role of glacier ice algae in reducing surface albedo is widely recognised but not well quantified and the feedbacks between the algae and the weathering crust remain poorly understood. In this letter, we summarise recent advances in the study of the biological darkening of the Greenland Ice Sheet and highlight three key research priorities that are required to better understand and forecast algal-driven melt: (i) identifying the controls on glacier ice algal growth and mortality, (ii) quantifying the spatio-temporal variability in glacier ice algal biomass and processes involved in cell redistribution and (iii) determining the albedo feedbacks between algal biomass and weathering crust characteristics. Addressing these key research priorities will allow us to better understand the supraglacial ice-algal system and to develop an integrated model incorporating the algal and physical controls on ice surface albedo
L\'evy flights of photons in hot atomic vapours
Properties of random and fluctuating systems are often studied through the
use of Gaussian distributions. However, in a number of situations, rare events
have drastic consequences, which can not be explained by Gaussian statistics.
Considerable efforts have thus been devoted to the study of non Gaussian
fluctuations such as L\'evy statistics, generalizing the standard description
of random walks. Unfortunately only macroscopic signatures, obtained by
averaging over many random steps, are usually observed in physical systems. We
present experimental results investigating the elementary process of anomalous
diffusion of photons in hot atomic vapours. We measure the step size
distribution of the random walk and show that it follows a power law
characteristic of L\'evy flights.Comment: This final version is identical to the one published in Nature
Physic
- …