468 research outputs found

    Spinon-holon interactions in an anisotropic t-J chain: a comprehensive study

    Full text link
    We consider a generalization of the one-dimensional t-J model with anisotropic spin-spin interactions. We show that the anisotropy leads to an effective attractive interaction between the spinon and holon excitations, resulting in a localized bound state. Detailed quantitative analytic predictions for the dependence of the binding energy on the anisotropy are presented, and verified by precise numerical simulations. The binding energy is found to interpolate smoothly between a finite value in the t-Jz limit and zero in the isotropic limit, going to zero exponentially in the vicinity of the latter. We identify changes in spinon dispersion as the primary factor for this non-trivial behavior.Comment: 12 pages, 13 figures, long story. The short story is cond-mat/0702213. Published versio

    Binding of holons and spinons in the one-dimensional anisotropic t-J model

    Full text link
    We study the binding of a holon and a spinon in the one-dimensional anisotropic t-J model using a Bethe-Salpeter equation approach, exact diagonalization, and density matrix renormalization group methods on chains of up to 128 sites. We find that holon-spinon binding changes dramatically as a function of anisotropy parameter \alpha=J_\perp/J_z: it evolves from an exactly deducible impurity-like result in the Ising limit to an exponentially shallow bound state near the isotropic case. A remarkable agreement between the theory and numerical results suggests that such a change is controlled by the corresponding evolution of the spinon energy spectrum.Comment: 4 pages, 5 figures, published versio

    Acoustic instability of a circular vortex with a smoothed vorticity profile

    Full text link
    It is known that a localized vortex can have two specific mechanisms of interaction with the ambient flow. The first mechanism is associated with acoustic radiation, which is accompanied by a loss of energy and causes instability in the case of negative energy of vortex disturbances. The second is a Miles mechanism of interaction of the vortex core oscillations with disturbances in the vicinity of the critical layer (where the phase velocity of the disturbances coincides with the velocity of the mean flow), accompanied by an energy flux from the critical layer vicinity, which leads to damping in the case of negative energy of the oscillations. For the first time, the flow with both of these mechanisms is considered. The problem is solved from the first principles. It is shown that the Miles mechanism can completely suppress acoustic instability, however, in the case of a stronger loss of energy due to acoustic radiation, acoustic instability will dominate. The role of various parameters is analyzed and a quantitative criterion for the acoustic instability of a vortex with a smoothed vorticity profile is obtained

    Spin pseudogap in Ni-doped SrCuO2

    Full text link
    The S=1/2 spin chain material SrCuO2 doped with 1% S=1 Ni-impurities is studied by inelastic neutron scattering. At low temperatures, the spectrum shows a pseudogap \Delta ~ 8 meV, absent in the parent compound, and not related to any structural phase transition. The pseudogap is shown to be a generic feature of quantum spin chains with dilute defects. A simple model based on this idea quantitatively accounts for the exprimental data measured in the temperature range 2-300 K, and allows to represent the momentum-integrated dynamic structure factor in a universal scaling form.Comment: 5 pages, 3 figure

    Quantum vs. Geometric Disorder in a Two-Dimensional Heisenberg Antiferromagnet

    Full text link
    We present a numerical study of the spin-1/2 bilayer Heisenberg antiferromagnet with random interlayer dimer dilution. From the temperature dependence of the uniform susceptibility and a scaling analysis of the spin correlation length we deduce the ground state phase diagram as a function of nonmagnetic impurity concentration p and bilayer coupling g. At the site percolation threshold, there exists a multicritical point at small but nonzero bilayer coupling g_m = 0.15(3). The magnetic properties of the single-layer material La_2Cu_{1-p}(Zn,Mg)_pO_4 near the percolation threshold appear to be controlled by the proximity to this new quantum critical point.Comment: minor changes, updated figure

    8He Spectroscopy in Stopped Pion Absorption By 9Be

    Get PDF
    Level structure of 8He has been studied in the reaction of stopped pion absorption by 9Be nuclei. The missing mass spectrum in the range 0 MeV ≤ MM ≤ 10 MeV has been described by the superposition of phase-space distributions and the three states of 8He. Parameters of these states have been compared with data of other experimental and theoretical works

    Instability of antiferromagnetic magnons in strong fields

    Full text link
    We predict that spin-waves in an ordered quantum antiferromagnet (AFM) in a strong magnetic field become unstable with respect to spontaneous two-magnon decays. At zero temperature, the instability occurs between the threshold field H∗H^* and the saturation field HcH_c. As an example, we investigate the high-field dynamics of a Heisenberg antiferromagnet on a square lattice and show that the single-magnon branch of the spectrum disappears in the most part of the Brillouin zone.Comment: RevTeX, 4 pages, 3 figures, accepted to PR

    Holes in the t-J_z model: a thorough study

    Full text link
    The t-J_z model is the strongly anisotropic limit of the t-J model which captures some general properties of the doped antiferromagnets (AF). The absence of spin fluctuations simplifies the analytical treatment of hole motion in an AF background and allows us to calculate the single- and two-hole spectra with high accuracy using regular diagram technique combined with real-space approach. At the same time, numerical studies of this model via exact diagonalization (ED) on small clusters show negligible finite size effects for a number of quantities, thus allowing a direct comparison between analytical and numerical results. Both approaches demonstrate that the holes have tendency to pair in the p- and d-wave channels at realistic values of t/J. The interactions leading to pairing and effects selecting p and d waves are thoroughly investigated. The role of transverse spin fluctuations is considered using perturbation theory. Based on the results of the present study, we discuss the pairing problem in the realistic t-J-like model. Possible implications for preformed pairs formation and phase separation are drawn.Comment: 21 pages, 15 figure

    Low energy states with different symmetries in the t-J model with two holes on a 32-site lattice

    Full text link
    We study the low energy states of the t-J model with two holes on a 32-site lattice with periodic boundary conditions. In contrary to common belief, we find that the state with d_{x^2-y^2} symmetry is not always the ground state in the realistic parameter range 0.2\le J/t\le 0.4. There exist low-lying finite-momentum p-states whose energies are lower than the d_{x^2-y^2} state when J/t is small enough. We compare various properties of these low energy states at J/t=0.3 where they are almost degenerate, and find that those properties associated with the holes (such as the hole-hole correlation and the electron momentum distribution function) are very different between the d_{x^2-y^2} and p states, while their spin properties are very similar. Finally, we demonstrate that by adding ``realistic'' terms to the t-J model Hamiltonian, we can easily destroy the d_{x^2-y^2} ground state. This casts doubt on the robustness of the d_{x^2-y^2} state as the ground state in a microscopic model for the high temperature superconductors
    • …
    corecore