3 research outputs found

    Light-Activated Proteolysis for the Spatiotemporal Control of Proteins

    No full text
    The regulation of proteolysis is an efficient way to control protein function in cells. Here, we present a general strategy enabling to increase the spatiotemporal resolution of conditional proteolysis by using light activation as trigger. Our approach relies on the auxin-inducible degradation system obtained by transposing components of the plant auxin-dependent degradation pathway in mammalian cells. We developed a photoactivatable auxin that acts as a photoactivatable inducer of degradation. Upon local and short light illumination, auxin is released in cells and triggers the degradation of a protein of interest with spatiotemporal control

    Fluorogenic Probing of Membrane Protein Trafficking

    No full text
    Methods to differentially label cell-surface and intracellular membrane proteins are indispensable for understanding their function and the regulation of their trafficking. We present an efficient strategy for the rapid and selective fluorescent labeling of membrane proteins based on the chemical-genetic fluorescent marker FAST (fluorescence-activating and absorption-shifting tag). Cell-surface FAST-tagged proteins could be selectively and rapidly labeled using fluorogenic membrane-impermeant 4-hydroxybenzylidene rhodanine (HBR) analogs. This approach allows the study of protein trafficking at the plasma membrane with various fluorometric techniques, and opens exciting prospects for the high-throughput screening of small molecules able to restore disease-related trafficking defects

    Fluorogenic Probing of Membrane Protein Trafficking

    No full text
    Methods to differentially label cell-surface and intracellular membrane proteins are indispensable for understanding their function and the regulation of their trafficking. We present an efficient strategy for the rapid and selective fluorescent labeling of membrane proteins based on the chemical-genetic fluorescent marker FAST (fluorescence-activating and absorption-shifting tag). Cell-surface FAST-tagged proteins could be selectively and rapidly labeled using fluorogenic membrane-impermeant 4-hydroxybenzylidene rhodanine (HBR) analogs. This approach allows the study of protein trafficking at the plasma membrane with various fluorometric techniques, and opens exciting prospects for the high-throughput screening of small molecules able to restore disease-related trafficking defects
    corecore