446 research outputs found
Adaptive minimum symbol error rate beamforming assisted receiver for quadrature amplitude modulation systems
An adaptive beamforming assisted receiver is proposed for multiple antenna aided multiuser systems that employ bandwidth efficient quadrature amplitude modulation (QAM). A novel minimum symbol error rate (MSER) design is proposed for the beamforming assisted receiver, where the system’s symbol error rate is directly optimized. Hence the MSER approach provides a significant symbol error ratio performance enhancement over the classic minimum mean square error design. A sample-by-sample adaptive algorithm, referred to as the least symbol error rate (LBER) technique, is derived for allowing the adaptive implementation of the system to arrive from its initial beamforming weight solution to MSER beamforming solution
Functional characterization of three genes encoding putative oxidoreductases required for cercosporin toxin blosynthesis in the fungus Cercospora nicotianae
Cercosporin is a non-host-selective, photoactivated polyketide toxin produced by many phytopathogenic Cercospora species, which plays a crucial role during pathogenesis on host plants. Upon illumination, cercosporin converts oxygen molecules to toxic superoxide and singlet oxygen that damage various cellular components and induce lipid peroxidation and electrolyte leakage. Three genes (CTB5, CTB6 and CTB7) encoding putative FAD/FMN- or NADPH-dependent oxidoreductases in the cercosporin toxin biosynthetic pathway of C. nicotianae were functionally analysed. Replacement of. each gene via double recombination was utilized to create null mutant strains that were completely impaired in cercosporin production as a consequence of specific interruption at the CTB5, CTB6 or CTB7 locus. Expression of CTB1, CTB5, CTB6, CTB7 and CTB8 was drastically reduced or nearly abolished when CTB5, CTB6 or CTB7 was disrupted. Production of cercosporin was revived when a functional gene cassette was introduced into the respective mutants. All ctb5, ctb6 and ctb7 null mutants retained wild-type levels of resistance against toxicity of cercosporin or singlet-oxygen-generating compounds, indicating that none of the genes plays a role in self-protection
Large upper critical field in non-centrosymmetric superconductor Y2C3
We determine the upper critical field of
non-centrosymmetric superconductor using two distinct methods: the
bulk magnetization M(T) and the tunnel-diode oscillator (TDO) based impedance
measurements. It is found that the upper critical field reaches a value of 30T
at zero temperature which is above the weak-coupling Pauli paramagnetic limit.
We argue that the observation of such a large in
could be attributed to the admixture of spin-singlet and spin-triplet pairing
states as a result of broken inversion symmetry.Comment: 4 pages, 3 figures, accepted by J. Phys. Chem. Solid
Pion-nucleon elastic scattering amplitude within covariant baryon chiral perturbation theory up to level
The calculation on pion-nucleon elastic scattering amplitude in EOMS
scheme within covariant baryon chiral perturbation theory is reviewed.
Numerical fits to partial wave amplitudes up to GeV and 1.20
GeV are performed and the results are compared with previous studies.Comment: Talk given by D. L. Yao at QCD2012, July 2- 7, Montpellier, Franc
The Zamolodchikov-Faddeev algebra for open strings attached to giant gravitons
We extend the Zamolodchikov-Faddeev algebra for the superstring sigma model
on , which was formulated by Arutyunov, Frolov and
Zamaklar, to the case of open strings attached to maximal giant gravitons,
which was recently considered by Hofman and Maldacena. We obtain boundary
-matrices which satisfy the standard boundary Yang-Baxter equation.Comment: 22 pages, no figure; added a referenc
A Statistical Study on the Morphology of Rays and Dynamics of Blobs in the Wake of Coronal Mass Ejections
In this paper, with a survey through the Large Angle and Spectrometric
Coronagraph (LASCO) data from 1996 to 2009, we present 11 events with plasma
blobs flowing outwards sequentially along a bright coronal ray in the wake of a
coronal mass ejection. The ray is believed to be associated with the current
sheet structure that formed as a result of solar eruption, and the blobs are
products of magnetic reconnection occurring along the current sheet. The ray
morphology and blob dynamics are investigated statistically. It is found that
the apparent angular widths of the rays at a fixed time vary in a range of
2.1-6.6 (2.0-4.4) degrees with an average of 3.5 (2.9) degrees at 3 (4) Rs,
respectively, and the observed durations of the events vary from 12 h to a few
days with an average of 27 h. It is also found, based on the analysis of blob
motions, that 58% (26) of the blobs were accelerated, 20% (9) were decelerated,
and 22% (10) moved with a nearly-constant speed. Comparing the dynamics of our
blobs and those that are observed above the tip of a helmet streamer, we find
that the speeds and accelerations of the blobs in these two cases differ
significantly. It is suggested that these differences of the blob dynamics stem
from the associated magnetic reconnection involving different magnetic field
configurations and triggering processes.Comment: 12 pages, 6 figures, accepted by Solar Physic
Two-Boson Exchange Physics: A Brief Review
Current status of the two-boson exchange contributions to elastic
electron-proton scattering, both for parity conserving and parity-violating, is
briefly reviewed. How the discrepancy in the extraction of elastic nucleon form
factors between unpolarized Rosenbluth and polarization transfer experiments
can be understood, in large part, by the two-photon exchange corrections is
discussed. We also illustrate how the measurement of the ratio between
positron-proton and electron-proton scattering can be used to differentiate
different models of two-photon exchange. For the parity-violating
electron-proton scattering, the interest is on how the two-boson exchange
(TBE), \gamma Z-exchange in particular, could affect the extraction of the
long-sought strangeness form factors. Various calculations all indicate that
the magnitudes of effect of TBE on the extraction of strangeness form factors
is small, though can be large percentage-wise in certain kinematics.Comment: 6 pages, 5 figures, prepared for Proceedings of the fifth
Asia-Pacific Conference on Few-Body Problems in Physics (APFB2011), Seoul,
Korea, August 22-26, 2011, to appear in Few-Body Systems, November 201
Ambiversion of X(3872)
An analysis including most recent Belle data on X(3872) is performed, using
coupled channel Flatt\'e formula. A third sheet pole close to but
\textit{below} threshold is found, besides the bound state/virtual
state pole discussed in previous literature. The co-existence of two poles near
the threshold indicates that the X(3872) may be of ordinary state origin, distorted by strong coupled channel effects. The
latter manifests itself as a molecular bound state (or a virtual state).Comment: Slightly revised version accepted for publication in Physics Letter
Two-gap superconductivity in LaNiGa with nonunitary triplet pairing and even parity gap symmetry
The nature of the pairing states of superconducting LaNiC and LaNiGa has to date remained a puzzling question. Broken time reversal symmetry has been observed in both compounds and a group theoretical analysis implies a non-unitary triplet pairing state. However all the allowed non-unitary triplet states have nodal gap functions but most thermodynamic and NMR measurements indicate fully gapped superconductivity in LaNiC. Here we probe the gap symmetry of LaNiGa by measuring the London penetration depth, specific heat and upper critical field. These measurements demonstrate two-gap nodeless superconductivity in LaNiGa, suggesting that this is a common feature of both compounds. These results allow us to propose a novel triplet superconducting state, where the pairing occurs between electrons of the same spin, but on different orbitals. In this case the superconducting wavefunction has a triplet spin component but isotropic even parity gap symmetry, yet the overall wavefunction remains antisymmetric under particle exchange. This model leads to a nodeless two-gap superconducting state which breaks time reversal symmetry, and therefore accounts well for the seemingly contradictory experimental results
Magnetic and pair correlations of the Hubbard model with next-nearest-neighbor hopping
A combination of analytical approaches and quantum Monte Carlo simulations is
used to study both magnetic and pairing correlations for a version of the
Hubbard model that includes second-neighbor hopping as a
model for high-temperature superconductors. Magnetic properties are analyzed
using the Two-Particle Self-Consistent approach. The maximum in magnetic
susceptibility as a function of doping appears both at finite
and at but for two totally different physical reasons. When
, it is induced by antiferromagnetic correlations while at
it is a band structure effect amplified by interactions.
Finally, pairing fluctuations are compared with -matrix results to
disentangle the effects of van Hove singularity and of nesting on
superconducting correlations. The addition of antiferromagnetic fluctuations
increases slightly the -wave superconducting correlations despite the
presence of a van Hove singularity which tends to decrease them in the
repulsive model. Some aspects of the phase diagram and some subtleties of
finite-size scaling in Monte Carlo simulations, such as inverted finite-size
dependence, are also discussed.Comment: Revtex, 8 pages + 15 uuencoded postcript figure
- …