349 research outputs found

    Low TCR nanocomposite strain gages

    Get PDF
    A high temperature thin film strain gage sensor capable of functioning at temperatures above 1400.degree. C. The sensor contains a substrate, a nanocomposite film comprised of an indium tin oxide alloy, zinc oxide doped with alumina or other oxide semiconductor and a refractory metal selected from the group consisting of Pt, Pd, Rh, Ni, W, Ir, NiCrAlY and NiCoCrAlY deposited onto the substrate to form an active strain element. The strain element being responsive to an applied force

    Nanocomposite Strain Gauges Having Small TCRs

    Get PDF
    Ceramic strain gauges in which the strain-sensitive electrically conductive strips made from nanocomposites of noble metal and indium tin oxide (ITO) are being developed for use in gas turbine engines and other power-generation systems in which gas temperatures can exceed 1,500 F (about 816 C). In general, strain gauges exhibit spurious thermally induced components of response denoted apparent strain. When temperature varies, a strain-gauge material that has a nonzero temperature coefficient of resistance (TCR) exhibits an undesired change in electrical resistance that can be mistaken for the change in resistance caused by a change in strain. It would be desirable to formulate straingauge materials having TCRs as small as possible so as to minimize apparent strain. Most metals exhibit positive TCRs, while most semiconductors, including ITO, exhibit negative TCRs. The present development is based on the idea of using the negative TCR of ITO to counter the positive TCRs of noble metals and of obtaining the benefit of the ability of both ITO and noble metals to endure high temperatures. The noble metal used in this development thus far has been platinum. Combinatorial libraries of many ceramic strain gauges containing nanocomposites of various proportions of ITO and platinum were fabricated by reactive co-sputtering from ITO and platinum targets onto alumina- and zirconia-based substrates mounted at various positions between the targets

    Can water allocation in the Yellow River basin be improved?: Insights from a multi-agent system model

    Get PDF
    In 1999, the Government of China enforced a cross-provincial, quota-based Water Allocation Agreement that was developed in 1987 and titled Unified Water Flow Regulation (UWFR) to ensure that flow to the Yellow River mouth would not be cut off. This policy was in line with the refocus of the Government, over the last decade, on sustainable water use and keeping the Yellow River healthy. The policy enforcement ended more than two decades of flow-cutoffs, that is, periods when the Yellow River did not reach the Bohai Sea at its mouth, during an increasing number of days every year.Water allocation, river basin management, multi-agent system,

    Analysis And Control Of Networked Systems Using Structural And Measure-Theoretic Approaches

    Get PDF
    Network control theory provides a plethora of tools to analyze the behavior of dynamical processes taking place in complex networked systems. The pattern of interconnections among components affects the global behavior of the overall system. However, the analysis of the global behavior of large scale complex networked systems offers several major challenges. First of all, analyzing or characterizing the features of large-scale networked systems generally requires full knowledge of the parameters describing the system\u27s dynamics. However, in many applications, an exact quantitative description of the parameters of the system may not be available due to measurement errors and/or modeling uncertainties. Secondly, retrieving the whole structure of many real networks is very challenging due to both computation and security constraints. Therefore, an exact analysis of the global behavior of many real-world networks is practically unfeasible. Finally, the dynamics describing the interactions between components are often stochastic, which leads to difficulty in analyzing individual behaviors in the network. In this thesis, we provide solutions to tackle all the aforementioned challenges. In the first part of the thesis, we adopt graph-theoretic approaches to address the problem caused by inexact modeling and imprecise measurements. More specifically, we leverage the connection between algebra and graph theory to analyze various properties in linear structural systems. Using these results, we then design efficient graph-theoretic algorithms to tackle topology design problems in structural systems. In the second part of the thesis, we utilize measure-theoretic techniques to characterize global properties of a network using local structural information in the form of closed walks or subgraph counts. These methods are based on recent results in real algebraic geometry that relates semidefinite programming to the multidimensional moment problem. We leverage this connection to analyze stochastic networked spreading processes and characterize safety in nonlinear dynamical systems
    • …
    corecore