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ABSTRACT

ANALYSIS AND CONTROL OF NETWORKED SYSTEMS USING STRUCTURAL

AND MEASURE-THEORETIC APPROACHES

Ximing Chen

Victor M. Preciado

Network control theory provides a plethora of tools to analyze the behavior of dynamical

processes taking place in complex networked systems. The pattern of interconnections

among components affects the global behavior of the overall system. However, the

analysis of the global behavior of large scale complex networked systems offers several

major challenges. First of all, analyzing or characterizing the features of large-scale

networked systems generally requires full knowledge of the parameters describing the

system’s dynamics. However, in many applications, an exact quantitative description of

the parameters of the system may not be available due to measurement errors and/or

modeling uncertainties. Secondly, retrieving the whole structure of many real networks

is very challenging due to both computation and security constraints. Therefore, an

exact analysis of the global behavior of many real-world networks is practically unfea-

sible. Finally, the dynamics describing the interactions between components are often

stochastic, which leads to difficulty in analyzing individual behaviors in the network.

In this thesis, we provide solutions to tackle all the aforementioned challenges. In the

first part of the thesis, we adopt graph-theoretic approaches to address the problem

caused by inexact modeling and imprecise measurements. More specifically, we lever-
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age the connection between algebra and graph theory to analyze various properties in

linear structural systems. Using these results, we then design efficient graph-theoretic

algorithms to tackle topology design problems in structural systems. In the second part

of the thesis, we utilize measure-theoretic techniques to characterize global properties

of a network using local structural information in the form of closed walks or subgraph

counts. These methods are based on recent results in real algebraic geometry that re-

lates semidefinite programming to the multidimensional moment problem. We leverage

this connection to analyze stochastic networked spreading processes and characterize

safety in nonlinear dynamical systems.
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Chapter 1

Introduction

Natural and artificial systems often consist of a large number of components intercon-

nected via a complex pattern of connections [1–3]. Examples of such complex systems

include biological [4–6], brain [7–10], social [11–14] and communication [15–18] net-

works, to mention a few. In particular, the pattern of interconnections among these

components affects the global behavior of the overall system. In this direction, network

control theory powerful tools to characterize and analyze the structure and function

of complex networked systems, examples include epidemic outbreaks in human contact

networks [19], information spreading in social networks [20], or synchronization in power

systems [21], among with others [22–24].

The underlying goal of using networks to model various natural and engineered sys-

tems is to reveal how the interconnection patterns between components affect the global

behavior of the overall system. For example, how fast a meme is spreading in a social net-

work is related to how individuals are connected to each other. However, analyzing the

global behavior of large-scale complex networked systems often faces a few challenges.

Firstly, analyzing or characterizing the dynamics of large-scale networked systems often

requires full knowledge of the parameters describing the system’s structure. In many

applications involving large-scale networks, an exact quantitative description of the pa-

rameters of the system may not be available due to measurement errors and/or modeling
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uncertainties [25, 26]. Secondly, characterizing the global behavior of a system cannot

be done without having access to the entire structure of the network. However, the sheer

size of real-world networks makes the problem computationally challenging. In this di-

rection, it is typically impossible to retrieve the whole structure of many real networks

due to both computation and/or security constraints. For example, the spectral radius

of a directed graph is closely related to many networked system properties such as the

graph independence number and the speed of networked spreading processes. Nonethe-

less, the spectral radius can only be computed when the structure of the network is

completely known. Finally, in certain networked systems, the dynamics describing the

evolution of the network states is often stochastic, which makes the analysis challenging.

In this thesis, I provide solutions to tackle all the aforementioned challenges. More

specifically, in the first part of my thesis, I use tools from structural system theory

and graph theory to address the problem caused by inexact modeling and imprecise

measurements. In the second part of my thesis, I use measure-theoretic techniques

to analyze the global behavior of a network using local structural information. This

method is based on recent development in functional analysis providing a connection

between semidefinite programming and the multivariate moment problem. Furthermore,

I leverage this connection to analyze stochastic spreading processes on networks, among

other applications such as safety synthesis of nonlinear dynamical systems.

1.1 Structural and Graph-theoretic Approach for System

Analysis and Design

Complex networks have been shown to be a powerful tool for modeling dynamical sys-

tems [26–28]. In particular, when analyzing and designing networked dynamical sys-

tems, it is crucial to verify their controllability, i.e., the existence of an input sequence

allowing us to drive the states of the system towards an arbitrary state within finite

time. Nonetheless, verifying such a property requires full knowledge of the parame-

ters describing the system’s dynamics [29]. However, in many applications involving

2



large-scale networks, those parameters are difficult, or even impossible, to obtain [26].

Alternatively, it is practically more viable to identify the presence or absence of dynam-

ical interconnections between each pair of nodes in the network, without characterizing

the strength of these interactions. Subsequently, it is of interest to analyze system prop-

erties, such as controllability, using exclusively information about the system’s structure

and tools from graph theory [30]. In other words, even though an exact quantification on

the edge-weights in the network may not be available, it is still possible to analyze net-

work control properties resorting to tools developed in the context of structural systems

theory [31–34].

Seminal work on graph-theoretic analysis of controllability can be found in [31], in which

the notion of structural controllability was introduced. Following this seminal work, the

authors in [32, 33, 35, 36] provided necessary and sufficient conditions for structural

controllability of multi-input linear time-invariant (LTI) systems using various graph-

theoretic notions. Nonetheless, existing results on structural controllability assumed

implicitly that the parameters are either fixed zeros or independent free variables (see

Figure 1-1 for an illustration). Nonetheless, such an assumption is often violated in

practical scenarios, for instance, when the system is characterized by undirected net-

works [37], or when different interconnections in the system are strongly correlated [38].

Consequently, it is of interest to provide necessary and sufficient conditions for structural

systems with special weight constraints, which is the main focus of Chapter 2. Similar

problems are considered in [39] and [40]. However, the result in [39] is not applicable

to systems modeled by undirected graph, whereas the matrix net approach in [40] may

suffer from computational complexity in large-scale systems. Moreover, the authors

in [41] and [42] also proposed, separately and independently, graph-theoretic necessary

and sufficient conditions for structural controllability of dynamical systems modeled by

a symmetric graph.

Another objective of Chapter 2 is to provide necessary and sufficient conditions for

structural output controllability of LTI systems with symmetric state matrices. This is

motivated by the following concern: While controllability is concerned about our ability

3
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Figure 1-1: (a) An examplary graph representation of a linear structural system with
two states and one input. The input is marked by red circle whereas the states are
marked by blue circles. (b) The algebraic representation of the structural system, where
p ∈ R5 is a vector consisting of 5 independent parameters, denoted using ?i, i = 1, . . . , 5.
Each of the parameter in p represents an unknown weight value of edges in the graph
in (a). (c) A numerical realization of the structural system in which the parameters are
set to be p̃.

to steer all the states in the system arbitrarily, in certain scenarios involving large-scale

systems, we are only concerned about our ability to steer a specific subset of states. In

this context, we consider the notion of (structural) target controllability [43, 44]. More

generally, it is shown in [45] that target controllability is a particular case of output con-

trollability, i.e., our ability steer the system’s outputs arbitrarily. Although there are

recent work providing necessary and sufficient conditions for strong structural target

controllability [46, 47], to the best of our knowledge, providing necessary and sufficient

conditions for structural target controllability and structural output controllability re-

mains an unsolved problem [48]. As a result, we provide the first result for characterizing

structural output controllability in structural linear systems.

Loosely speaking, a network is structurally controllable if it is controllable for almost

all realizations of edge weights (see Section 3.1 in Chapter 2 for a formal description

of this concept). When a networked system is not structurally controllable, then it is

impossible to design a controllable system by tuning the weights of the network. In

this case, one has to resort to structural changes in the system. This can be done by

4



either (i) adding actuation capabilities to the networked system, or (ii) modifying the

topology of the dynamical network by, for example, adding new edges to the network

topology. The former case is explored in [28, 48–54]. Briefly, in [28, 48, 54], proposed

graph-theoretical algorithms to find the minimum number of driving nodes to ensure

structural controllability in complex networks. In [49, 50], the authors complement this

work to obtain the minimum number of driven nodes in polynomial-time. Subsequently,

the minimum number of driven nodes required while accounting for actuation costs

was addressed in [51, 52]. Alternatively, if one seeks the minimum collection of inputs

from an a priori defined collection of actuation capabilities, then the problem is NP-

hard [53]. Notwithstanding, there are several cases when adding actuation capabilities

to the network is either too expensive or not feasible. Therefore, whenever possible or

cost-efficient, one can opt to modify the topology of the dynamical network. This is

the main focus of the Chapter 3 of this thesis, where we propose a polynomial-time

algorithm to determine the minimum number of extra connections that must be added

to a given structural system in order to ensure structural controllability.

We find in the literature several similar and earlier work in this direction. In [55], Wang

et al. proposed an approach to perturb the structure of an undirected network to ensure

structurally controllability when only one driving node was considered. In [56], Ding et

al. studied a similar problem for directed networks. However, they assumed that all the

nodes are already reachable from the driving nodes. Altough they solved the problem

using a constrained integer program which is, in general, NP-hard [57], they did not

discuss the complexity of their algorithm. In contrast with previous works, we address

the case of arbitrary directed network topologies with any number of driving nodes and

show that the problem can be solved in polynomial time without any assumption on

reachability. Parallel work on the same topic was also explored by [58], in which the

authors provided complete characterizations of the computation complexity of adding a

number of directed edges that incurs into minimum total cost to render a structurally

controllable system.

In Chapter 4, we further extend our design strategies introduced in Chapter 3 to con-

5



sider topology design problems in symmetrically structured systems. More specifically,

we consider the minimum-cost edge selection problem, in which we aim to add undi-

rected edges to a given graph to render a symmetrically structurally target controllable

system. Moreover, we assume that each edge can be added at a given cost and we aim to

find a configuration of edges incurring into minimum total cost. We provide full charac-

terizations on the computation complexity of this problem and provide polynomial-time

algorithms that are able to obtain optimal solutions to a few polynomially-solvable in-

stances.

While controllability of networked dynamical systems has attracted a great amount of re-

search interest [59–61], it is of equal interest to consider a less restrictive system property

called stabilizability, especially in typical engineering system design problems [59–61].

Instead of requiring full-steering ability of all states of the system, stabilizability only

requires that the system states can be steered to the origin asymptotically by inject-

ing proper controls. However, similar to controllability, assessing whether a system is

stabilizable requires the exact parameters of the system.

In this direction, assessing the stabilizability from the structural information on the

system dynamics model has been an active topic of research [49, 62, 63]. In Chap-

ter 5, we provide graph-theoretic characterization on structural stabilizability of sym-

metrically structured systems. We further utilize the result to consider design prob-

lems from a network security perspective. Unlike existing work on control of networks

under malicious attackes [58, 64–72], we investigate a fully novel problem of optimal

attack/recovery against stabilizability by manipulating network topological structure

through disabling/adding actuators.

1.2 Measure-theoretic Approach for System Analysis

In the first part of this thesis, we use structural systems theory and graph theory to

analyze networked dynamical systems with uncertain weights. In the second part of the

thesis, we will mainly be concerned about the following two challenges: (i) analyzing

6



global system properties when the entire structure of the network is impossible to obtain,

and (ii) when the dynamics describing the transitions between the network states are

stochastic. Before addressing these two challenges, we first provide background and

motivation about the importance of these two problems.

1.2.1 Analyzing Global Properties of Networks Using Local Structural

Information

A common approach to model complex networks is via synthetic random models, such

as the Erdős-Rényi random graph [73], the Watts-Strogatz small-world model [74], or

the Barabási-Albert model [75], among many others [15, 76–78]. Synthetic models have

been used to analyze, for example, the behavior of many networked dynamical processes,

such as synchronization of coupled oscillators [74, 79, 80], network diffusion [81, 82] or

epidemic spreading [19, 83, 84] (see, for example [85, 86], for a thorough exposition).

A fruitful path to analyze the dynamics of networked processes exploits the connection

between network eigenvalues and dynamics. For example, the eigenvalues of the adja-

cency matrix can be used to characterize the speed of spreading of epidemic processes

in networks [19, 83, 84, 87, 88].

Even though network eigenvalues are of utmost importance, its computation in large-

scale networks is a very challenging problem [89]. On the one hand, the sheer size

of real-world networks makes this problem computationally challenging. On the other

hand, it is typically impossible to retrieve the whole structure of many real networks

due to privacy and/or security constraints. In contrast, it is usually feasible to extract

local samples of the network structure in the form of ego-networks [90] or subgraph

counts [6, 91–93] using graph crawlers. It is, therefore, of interest to analyze the role of

local structural samples on the global eigenvalue spectrum of a complex network.

We find in the literature many works aiming to upper and lower bound the spectral

radius of a graph from local structural information [94–105]. In [94] and [95], the authors

derived upper bound the spectral radius of a matrix from its symmetric and skew-

7



symmetric components. Merikoski et al. [98] provided bounds on the sum of selected

eigenvalues using the trace and the determinant. Instead of bounding the eigenvalues

of arbitrary square matrices, the works in [96, 97, 101] provide lower bounds on the

spectral radius of general non-negative matrices. Most of these bounds are based on

the traces of the matrix and/or its second power. In [99], the authors use the traces of

even-order powers of a matrix to provide upper bounds on the spectral radius, assuming

that the eigenvalues are all real. In [104, 105], the authors bound the spectral radius

of an undirected graph using subgraph counts. Similar results were obtained for the

spectral gap of the Laplacian matrix in [106, 107].

In Chapter 6, we develop a measure-theoretic framework to obtain upper and lower

bound on the spectral radius (a global system property) of large directed graphs using

counts of small subgraphs (local structural information). By exploiting recent results in

the multi-dimensional moment problem [108], we propose a hierarchy of small semidef-

inite programs [109] providing converging sequences of upper and lower bounds on the

spectral radius. We numerically show that our framework provides accurate upper and

lower bounds in real-world directed networks, as well as random synthetic digraphs.

While eigenvalues of the adjacency matrix is of importance, in certain applications, it is

of interest to study the eigenvalue spectrum of the Laplacian matrix. Particularly rele-

vant is the second smallest eigenvalue of the Laplacian matrix, also called the algebraic

connectivity [110], which is crucial in the analysis of consensus algorithms [111, 112]

and network synchronization [79]—see [113] and the references therein for a detailed

expositions of the applications of algebraic connectivity.

Due to the practical importance of the algebraic connectivity in systems and control,

several papers have been recently published on estimation of Laplacian eigenvalues [113–

121]. In [115], the authors presented a scheme in which agents in a network run

a continuous-time dynamics able to induce oscillations whose frequencies match the

Laplacian eigenvalues. In [116], a decentralized power iteration approach is introduced

to efficiently estimate the algebraic connectivity and the corresponding eigenvector us-

ing a continuous-time implementation. Analogous methods are developed to estimate
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algebraic connectivity in directed graphs by authors in [117]. In [121], the authors pro-

vide a continuous-time nonlinear dynamics on manifolds to distributively compute the

top largest (or smallest) eigenvalues of both the Laplacian and adjacency matrices. A

discrete-time dynamics inspired by the power iteration is proposed in [118]. Addition-

ally, the authors provided upper and lower bounds on the quality of estimation. In [119],

the authors used Khatri-Rao product of matrices to estimate Laplacian eigenvalues and

eigenvectors from a finite sequence of observations of a consensus-like dynamics.

Although there are a variety of work on algebraic connectivity estimation, few work are

able to achieve this goal using only local topological information of the network. In this

direction, the authors in [122] provided an upper bound on algebraic connectivity from

local structural samples of the network. In Section 8.1 of Chapter 8, we extend the

idea in [122] to provide a sequence of lower bounds on the algebraic connectivity of an

undirected graph. We show that, by leveraging the measure-theoretic framework pre-

sented in Chapter 6, we can obtain nontrivial lower bounds using, solely, local structural

information of the graph.

1.2.2 Analysis and Control of Spreading Processes

Modeling and analysis of spreading processes taking place in complex networks have

found applications in a wide range of scenarios, such as modeling the propagation of

malware in computer networks [123], failures in technological networks [124], memes in

social networks [125], and diseases in human populations [19, 84, 126]. We find in the

literature a wide variety of models to characterize the dynamics of spreading processes

over networks. In the epidemiological literature, these models consider the spread of

a disease in human contact networks in which individuals and their relationships are

modeled via complex networks. Some of the most popular models in the literature

are the Susceptible-Infected-Susceptible (SIS) [127], the Susceptible-Infected-Recovered

(SIR) [128], and their variants [129, 130].

During the last decade, several mathematical techniques have been developed to de-
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termine whether a disease spreading over a network will be eradicated quickly or, in

contrast, will spread widely over time, causing a large epidemic outbreak. These tech-

niques can then be used to design efficient strategies to contain, or even eradicate, the

spread of the disease by distributing medical resources throughout the network [131–

134]. One of the most important characteristics in the global behavior of these models

is the presence of phase transitions, or epidemic thresholds. These phase transitions can

be described as a dynamical bifurcations in the dynamics, where the system transition

from a single stable equilibrium at the origin (i.e., the disease-free state) towards the

existence of (potentially many) nontrivial equilibria. The authors in [87] presented an

approximate analysis to show that the networked SIS model presents a phase transition

that can be characterized in terms of the largest eigenvalue of the adjacency matrix

representing the network structure. A rigorous analysis of this phase transition was pre-

sented in [127], where the authors use Markov processes to model the exact stochastic

dynamics of the networked SIS spreading process. Following this approach, the authors

in [130] characterized the global dynamics of a more general spreading model which

includes the SIS as a particular case.

A common idea behind the aforementioned results is to construct a Markov transition

model and analyze the transition probabilities among network states. However, the

number of possible network states grows exponentially with the number of nodes. Con-

sequently, the analysis of the resulting Markov process is both computationally and

analytically challenging to study. An alternative approach to overcome this challenge

is to analyze the probability of each node being in a particular state at a given time.

For example, in the SIS spreading model, it is mathematically convenient to analyze the

time evolution of the probabilities of infection of each node in the network. However,

as illustrated in [127], the ODEs describing the evolution of these infection probabilities

depend on pairwise correlations (second-order moments) between the states of connected

nodes in the network. As shown in [135], the governing dynamics of these second-order

moments can also be described as ODEs involving third-order moments. In general,

the ODEs describing the dynamics of k-th order moments depend on (k + 1)-th order

10



moment. Therefore, a complete characterization of the dynamics requires, in general, an

exponential number of ODEs. To address this issue, it is common to resort to moment-

closure techniques—a method to obtain a closed system of ODEs by approximating

higher-order moments using lower-order ones [136]. Hence, it would be possible to use

this technique to obtain a polynomial number of ODEs approximating the dynamics

of moments of order k as a function of moments of order up to k. For instance, the

popular mean-field approximation (MFA) is a moment-closure techniques in which pair-

wise correlations are approximated by the products of two first-order expectations [127],

resulting in a linear number of ODEs. In [137], the authors proposed to close second-

order moments using Fréchet inequalities; whereas the authors in [138] proposed to close

third-order moments by products of first- and second-order moments.

Existing moment-closure techniques suffer from the following pitfalls. Firstly, there is

no theoretical guarantee on the quality of the approximation obtained. Secondly, in

the particular case of the SIS dynamics, these techniques often fail to lower bound

the evolution of the probabilities of infection of each node. These pitfalls are partly ad-

dressed by [137, 139]; in particular, in [139] the authors showed that the moment-closure

problem can be directly related to the multidimensional moment problem in functional

analysis [108]. In Chapter 7, we propose a mathematical and computational framework

to obtain a polynomial number of ODEs describing the dynamics of all k-th order mo-

ments of the SIS stochastic model for an arbitrary integer k and an arbitrary contact

network. Our framework utilizes recent results in real algebraic geometry relating the

multidimensional moment problem with semidefinite programming [108]. As part of

this framework, we provide upper and lower bounds on the evolution of an arbitrary

k-th moment of the SIS stochastic model. Moreover, we provide a simplified expression

for k = 1 to approximate the dynamics of the means of each node state using a linear

number of piecewise-affine differential equations. Finally, we extend our framework to

other compartmental spreading processes over networks, such as the SI and SIR models.

In the first part of Chapter 7, we study the dynamic behavior of single-disease processes

in single-layer networks. However, these models do not fully characterize how informa-
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tion spread throughout networks in the real world. For example, it is possible for a

human to obtain news via online and/or offline social networks. Aiming to provide a

more realistic model, Sahneh et al. proposed in [140] a modeling framework to analyze

spreading processes in multilayer networks. A further extension was proposed by Funk

and Jansen [141] by analyzing the case of two competitive viruses in a two-layer network.

In a similar direction, Wei et al. in [142] derived sufficient conditions for exponential

die-out of two competitive SIS viruses on an arbitrary two-layer network. A rigorous

nonlinear analysis of this model can be found in [143]. In Section 7.5 of Chapter 7, we

build on previous approaches to analyze and control the dynamics of (i) an arbitrary

number of diseases spreading through (ii) a multilayer contact network of non-identical

agents.

A central problem in public health is the development of vaccination strategies to tame

disease spreading. Several works have been recently propose in this direction. In [144],

several heuristics were proposed to immunize distribute vaccines throughout the nodes

of a network. In the control systems literature, Wan et al. proposed in [134] a method

to control the spread of a virus using eigenvalue sensitivity analysis. Our work is closely

related to [145], where the epidemic control problem was studied from an optimization

point of view, and [132, 146], where the authors developed different strategies for optimal

resource allocation in the single-disease, single-layer case using convex optimization. In

Section 7.5 of Chapter 7, we extend this framework to find the optimal budget allocation

to fabricate and distribute different types of vaccines to simultaneously control several

diseases in a (possibly directed) multi-layered network of non-identical agents.

1.3 Contributions

The work presented in this thesis have been published or submitted for publication in

conferences and journals such as IEEE Conference on Decision and Control, IEEE Trans-

actions on Control of Networked Systems, IEEE Transactions on Automatic Control,

and SIAM Journal on Matrix Analysis and Applications (see [147–151]). In addition to
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these papers, the author have also published works on engineering applications related

to smart cities and connected vehicles (see [152, 153]).
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Part I

Structural System Analysis and

Design via Graph Theory
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Chapter 2

Graph-theoretic Characterization

of Symmetric Linear Structural

Systems

We begin this chapter by introducing notion related to structural system theory and

graph theory that are necessary for the development of the results presented in the first

part of the thesis (i.e., Chapter 2–5).

2.1 Preliminaries on Graph theory and Algebra

2.1.1 Notations in Algebra

We denote the cardinality of a set S by |S|. We adopt the notation [n] to represent the

set of integers {1, . . . , n}. Let 0n×m ∈ Rn×m be the matrix with all entries equals to

zero. Whenever clear from the context, 0n×m is abbreviated as 0.

Given M1 ∈ Rn×m1 and M2 ∈ Rn×m2 , we let [M1,M2] ∈ Rn×(m1+m2) be the concatena-

tion of M1 and M2. The ij-th entry of M ∈ Rn×n is denoted by [M ]ij . Moreover, we

let [M ]j1,...,jki1,...,ik
be the k × k submatrix of M formed by collecting i1, . . . , ik-th rows and
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j1, . . . , jk-th columns of M . The determinant of a matrix M ∈ Rn×n is defined by the

expansion:

detM =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

[M ]iσ(i)

)
, (2.1)

where Sn is the set of all permutations of {1, . . . , n}, and sgn(σ) is the signature1 of a

permutation σ ∈ Sn.

A matrix M̄ ∈ {0, ?}n×m is called a structured matrix, if [M̄ ]ij is either a fixed zero

or an independent free parameter denoted by ?. In particular, we define a matrix M̄ ∈

{0, ?}n×n to be symmetrically structured, if the value of the free parameter associated

with [M̄ ]ij is constrained to be the same as the value of the free parameter associated

with [M̄ ]ji, for all j and i. For example, consider M̄ and Ā be specified by

M̄ =

 0 m12

m21 m22

 and Ā =

 0 a12

a12 a22

 ,
where m12,m21,m22 and a12, a22 are independent parameters. In this case, M̄ is a

structured matrix whereas Ā is symmetrically structured.

In the rest of the thesis, we refer to M̃ as a numerical realization of a (symmetri-

cally) structured matrix M̄ , i.e., M̃ is a matrix obtained by independently assigning

real numbers to each independent free parameter in M̄ . In addition, we say that the

structured matrix M̄ ∈ {0, ?}n×m is the structural pattern of the matrix M ∈ Rn×m,

where [M̄ ]ij = ? if and only if [M ]ij 6= 0, for ∀i ∈ [n], ∀j ∈ [m].

Given a (symmetrically) structured matrix M̄ , we let nM̄ be the number of its indepen-

dent free parameters and we associate with M̄ a parameter space RnM̄ . Furthermore, we

use vector pM̃ = (p1, . . . , pnM̄ )> ∈ RnM̄ to encode the value of independent free entries

of M̄ in a numerical realization M̃ .

In what follows, a set V ⊆ Rn is called a variety if there exist polynomials ϕ1, . . . , ϕk,

such that V = {x ∈ Rn : ϕi(x) = 0,∀i ∈ {1, . . . , k}}, and V is a proper variety when V 6=
1The signature of a permutation equals to 1 if |{(x, y) : x < y, σ(x) > σ(y)}| is even, and −1

otherwise.
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Rn. We denote by V c := Rn \ V its complement.

The term rank [30] of a (symmetrically) structured matrix M̄ , denoted as t–rank(M̄),

is the largest integer k such that, for some suitably chosen distinct rows i1, . . . , ik and

distinct columns j1, . . . , jk, all of the entries {[M̄ ]i`j`}k`=1 are ?-entries. Additionally,

a (symmetrically) structured matrix M̄ ∈ {0, ?}n×m is said to have generic rank k,

denoted as g–rank(M̄) = k, if there exists a numerical realization M̃ of M̄ , such that

rank(M̃) = k. If g–rank(M̄) > 0, it is worth noting that the set of parameters describing

all possible realizations forms a proper variety when rank(M̃) < g–rank(M̄) [36].

2.1.2 Preliminaries on Graph Theory

In the rest of the paper, we let G = (V, E) denote a directed graph whose vertex-set

and edge-set are denoted by V = {v1, . . . , vn} and E ⊆ V × V, respectively. A graph G

is called undirected if (i, j) ∈ E implies (j, i) ∈ E for all pairs of vertices i, j ∈ V. Given

an edge (i, j) ∈ E , we say that the ‘tail’ vertex i is pointing towards the ‘head’ vertex

j, which we denote by i → j. The order of G is defined by the number of its vertices.

The out-neighborhood of vertex i ∈ V is defined as N+
i = {j ∈ V : (i, j) ∈ E} . Similarly,

we define the in-neighborhood of vertex i as N−i = {j ∈ V : (j, i) ∈ E} .

A walk of length k in G is defined as an ordered sequence of vertices (i0, i1, . . . , ik) with

(i`, i`+1) ∈ E for all ` = 0, . . . , k − 1. If i0 = ik, the walk is said to be closed ; otherwise,

the walk is said to be open. We say that a vertex i ∈ V has a self-loop if (i, i) ∈ E . A

path P in G is defined as an ordered sequence of distinct vertices P = (v1, . . . , vk) with

{v1, . . . , vk} ⊆ V and (vi, vi+1) ∈ E for all i = 1, . . . , k− 1. A graph contains a multiedge

if any directed edge appears more than once in E . A digraph is said to be simple if the

digraph does not have self-loops or multiedges. A cycle is either a path (v1, . . . , vk) with

an additional edge (vk, v1) (denoted as C = (v1, . . . , vk, v1)), or a vertex with an edge

to itself (i.e., self-loop, denoted as cycle C = (v1, v1)). We denote by VC ⊆ V the set of

vertices in C, and EC ⊆ E the set of edges in C. The length of a cycle C, is defined as

the number of distinct vertices in C, and is denoted by |C|. A vertex v2 ∈ V is reachable
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from v1 ∈ V if there exists a path in G from v1 to v2.

A directed graph Gs = (Vs, Es) is a sub-graph of G if Vs ⊆ V and Es ⊆ E . In particular,

if Vs = V, then Gs is said to span G. Conversely, given a set S of vertices in G, we let

GS = (S,S ×S ⊂ E) be the subgraph of G induced by S. We also call GS the S-induced

subgraph of G. We say that GS can be covered by disjoint cycles if there exists C1, . . . , Cl,

such that S =
⋃l
i=1 VCi and VCi ∩ VCj = ∅, for all i 6= j, i, j ∈ {1, . . . , l}. Given a set

S ⊆ V, we define the in-neighbour set of S as N (S) = {vi ∈ V|(vi, vj) ∈ E , vj ∈ S}. We

say a vertex vi is reachable from vertex vj in G(V, E), if there exists a path from vertex

vj to vertex vi.

A graph is said to be strongly connected if there exists a path between any two vertices

in the graph. A strongly connected component (SCC) is a maximal subgraph Gs that is

strongly connected. A condensation of G is a directed acyclic graph (DAG) generated

by representing each SCC in G as a virtual vertex in the condensation and a directed

edge between two virtual vertices in the condensation exists, if and only if, there exists

a directed edge connecting the corresponding SCCs in G [154]. An SCC is said to be

linked if it has at least one incoming/outgoing edge from another SCC. In particular, a

source SCC has no incoming edges from another SCC and a sink SCC has no outgoing

edges to another SCC.

Given a directed graph G = (V, E) and two sets S1,S2 ⊆ V, we define the bipartite

graph B(S1,S2, ES1,S2) as an undirected graph, whose vertex set is S1 ∪ S2 and edge

set2 ES1,S2 = {{s1, s2} : (s1, s2) ∈ E , s1 ∈ S1, s2 ∈ S2}. Given B(S1,S2, ES1,S2), and a

set S ⊆ S1 or S ⊆ S2, we define bipartite neighbor set of S as NB(S) = {j : {j, i} ∈

ES1,S2 , i ∈ S}. A matching M is a set of edges in ES1,S2 that do not share vertices, i.e.,

given edges e = {s1, s2} and e′ = {s′1, s′2}, e, e′ ∈ M only if s1 6= s′1 and s2 6= s′2. The

vertex v is said to be right-unmatched with respect to a matching M associated with

B(S1,S2, ES1,S2) if v ∈ S2, and v does not belong to an edge in the matching M. A

matching is said to be maximum if it is a matching with the maximum number of edges

2We denote undirected edges using curly brackets {vi, vj}, in contrast with directed edges, for which
we use parenthesis.
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among all possible matchings. Additionally, a matching is called a perfect matching if

it does not contain right-unmatched vertices. Given a bipartite graph B(S1, S2, ES1,S2),

the maximum matching problem can be solved efficiently in O(
√
|S1 ∪ S2||ES1,S2 |) time

[154].

2.2 Problem Statements

We consider a linear time-invariant system whose dynamics is captured by

ẋ = Ax+Bu, y = Cx, (2.2)

where x ∈ Rn, y ∈ Rk and u ∈ Rm are the state, the output and the input vectors,

respectively. In addition, the matrix A ∈ Rn×n is the state matrix, B ∈ Rn×m is the

input matrix and C ∈ Rk×n is the output matrix. In this chapter, we consider the

following assumption:

Assumption 1. The state matrix A ∈ Rn×n is symmetric, i.e., A = A>.

This symmetry assumption is motivated by control problems arising in undirected net-

worked dynamical systems. Furthermore, this assumption will be crucial when estab-

lishing graph-theoretic results characterizing structural controllability problems in undi-

rected networks. Hereafter, we use the 3-tuple (A,B,C) to represent the system (2.2).

In particular, we use the pair (A,B) to denote a system without a measured output. A

pair (A,B) is called reducible if there exists a permutation matrix P , such that

PAP−1 =

A11 0

A21 A22

 , PB =

 0

B2

 , (2.3)

where A11 ∈ Rq×q and B2 ∈ R(n−q)×m, 1 ≤ q < n. The pair (A,B) is called irreducible

otherwise. Furthermore, we use Ā and B̄ to represent the structural pattern of A and

B, respectively. In particular, by Assumption 1, we consider Ā to be symmetrically

structured. Thus, (Ā, B̄) is referred to as the structural pair of the system (A,B).
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Given a structured matrix Ā, we associate it with a directed graph G(Ā) = (X , EX ,X ),

which we refer to as the state digraph, where X = {x1, . . . , xn} is the state vertex set, and

EX ,X = {(xj , xi) : [Ā]ij = ?} is the set of edges. Similarly, we associate a directed graph

G(Ā, B̄) = (X ∪U , EX ,X ∪EU ,X ) with the structural pair (Ā, B̄), where U = {u1, . . . , um}

is the set of input vertices and EU ,X = {(uj , xi) : [B̄]ij = ?} is the set of edges from input

vertices to state vertices. We refer to G(Ā, B̄) as the system digraph.

Definition 1 (Structural Controllability [31]). A structural pair (Ā, B̄) is structurally

controllable if there exists a numerical realization (Ã, B̃), such that the controllability

matrix Q(Ã, B̃) := [B̃, ÃB̃, . . . , Ãn−1B̃] has full row rank.

While controllability is concerned about the ability to steer all the states of a system

to a desired final state, under certain circumstances, it is more preferred to control the

behavior of only a subset of states. More specifically, given a set T ⊆ [n], which we refer

to as the target set, it is of interest to consider whether the set of selected states can be

steered arbitrarily. If so, we say that the pair (A,B) is target controllable with respect

to T [43]. Notice that this does not exclude the possibility of some other states indexed

by [n] \ T being controllable as well. Similarly, we introduce the notion of structural

target controllability in the context of structural pairs.

Definition 2 (Structural Target Controllability [44]). Given a structural pair (Ā, B̄),

and a target set T = {i1, . . . , ik} ⊆ [n], let XT be the set of state vertices corresponding

to T in G(Ā, B̄). We define a matrix CT ∈ Rk×n by

[CT ]`j =


1, if j = i`, i` ∈ T ,

0, otherwise.

(2.4)

The structural pair (Ā, B̄) is structurally target controllable with respect to T if there ex-

ists a numerical realization (Ã, B̃), such that the target controllability matrix QT (Ã, B̃) :=

CT [B̃, ÃB̃, . . . , Ãn−1B̃] has full row rank.

Note that structural controllability is equivalent to structural target controllability when

T = [n]. Therefore, the necessary and sufficient conditions for structurally target con-

trollable undirected networks can be applied to characterize structural controllability.

Subsequently, in this paper, we consider the following problem:
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Problem 1. Given a structural pair (Ā, B̄), where Ā is symmetrically structured and B̄

is a structured matrix, and a target set T ⊆ [n], find a necessary and sufficient condition

for (Ā, B̄) to be structurally target controllable with respect to T .

2.3 Characterizing Structural Properties using Graph The-

ory

In this section, we first introduce a proposition that is crucial for developing our solution

to Problem 1. Then, we characterize the generic rank of symmetrically structured matri-

ces in Lemma 1. Subsequently, we characterize the relationship between the term-rank

of a symmetrically structured matrix and the presence of non-zero simple eigenvalues

in a numerical realization in Lemma 2. This allows us to obtain a result characterizing

the relationship between irreducibility and structural controllability of a structural pair

involving symmetrically structured matrix (see Lemma 3). Based on these results, we

propose graph-theoretic necessary and sufficient conditions for structural controllability

and structural target controllability in Theorems 1 and 2, respectively.

Proposition 1 (Popov-Belevitch-Hautus (PBH) test [155]). The pair (A,B) is uncon-

trollable if and only if there exists a λ ∈ C and a nontrivial vector e ∈ Cn, such that

e>A = λe> and e>B = 0.

Given a pair (A,B), where A ∈ Rn×n and B ∈ Rn×m, we say that the mode (λ, e) of A,

where λ ∈ C and e ∈ Cn, is an uncontrollable mode if e>A = λe> and e>B = 0.

2.3.1 Generic Properties of Symmetrically-structured Matrices

If a symmetrically structured matrix is generically full rank, then any numerical realiza-

tion has almost surely no zero eigenvalue. In this subsection, we characterize the generic

rank of a symmetrically structured matrix in Lemma 1, which lays the foundation for a

further characterization of spectral properties of numerical realizations.
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Lemma 1. Consider an n × n symmetrically structured matrix Ā, and a set T =

{i1, . . . , ik} ⊆ [n]. Let G(Ā) = (X , EX ,X ) be the digraph representation of Ā, XT ⊆ X

be the set of vertices indexed by T , and CT be defined as in (2.4). The generic-rank of

CT Ā equals to k if and only if |N (S)| ≥ |S|, ∀S ⊆ XT .

Proof. See Appendix A.1.

Lemma 1 establishes a relationship between the generic rank of a submatrix of a symmet-

rically structured matrix and the topology of its corresponding digraph. Subsequently,

Corollary 1 follows, which characterizes the generic rank of the concatenation of a sym-

metrically structured matrix Ā ∈ {0, ?}n×n and a structured matrix B̄ ∈ {0, ?}n×m.

Corollary 1. Consider a structural pair (Ā, B̄), where Ā is symmetrically structured,

and a set T = {i1, . . . , ik} ⊆ [n]. Let G(Ā, B̄) = (X ∪ U , EX ,X ∪ EU ,X ) be the digraph

representation of (Ā, B̄), and XT ⊆ X be the set of vertices indexed by T . If |N (S)| ≥

|S|, ∀S ⊆ XT , then g–rank(CT [Ā, B̄]) = k.

Proof. See Appendix A.1.

In the remaining subsections, we aim to provide necessary and sufficient conditions for

structural controllability. To achieve this goal, we notice that the eigenvalues of the state

matrix are closely related to controllability, as indicated by Proposition 1. Besides,

the approach in [35] shows that for an irreducible structural pair with no symmetric

parameter dependencies, all the nonzero modes of its numerical realization are almost

surely simple and controllable. Similarly, to characterize structural controllability of

undirected networks, we will provide characterizations of the modes in the numerical

realization of a structural pair involving symmetrically structured matrix. Instead of

using the maximum order of principle minor as in [35], we derive below a condition based

on the term rank to ensure that generically the numerical realization of a symmetrically

structured matrix has k nonzero simple eigenvalues.

Lemma 2. Given an n× n symmetrically structured matrix Ā, if t–rank(Ā) = k, then

there exists a proper variety V1 ⊂ RnĀ, such that for any numerical realization Ã,
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where the numerical values assigned to free parameters of Ā are encoded in the vector

pÃ ∈ RnĀ \ V1, Ã has k nonzero simple eigenvalues.

Proof. See Appendix A.1.

Remark 1. The challenge in the proof of Lemma 2 is to construct a finite number of

nonzero polynomials, i.e., the polynomials of where not every coefficient is zero, such

that the numerical values assigned to free parameters of Ā in a numerical realization Ã,

where Ã does not have k nonzero simple eigenvalues, are the zeros of those polynomials.

Since the set of zeros of a nonzero polynomial has Lebesgue measure zero [156], it follows

that for any numerical realization Ã, Ã has almost surely k nonzero simple eigenvalues.

Remark 2. Lemma 2 generally is not true for a structured matrix. For example, con-

sider M̄ =
[

0,?
0,0

]
, t–rank(M̄) = 1, but for any numerical realization, M̃ has no nonzero

mode.

As shown in [31, 35], irreducibility is a necessary condition for structural controllability.

We can expect that irreducibility also plays a similar role in symmetrically structured

systems. Moreover, we show below that irreducibility ensures that all nonzero simple

modes of Ã are controllable, generically.

Lemma 3. Given a structural pair (Ā, B̄), where Ā is symmetrically structured and

t–rank(Ā) = k, if (Ā, B̄) is irreducible, then there exists a proper variety V ⊂ RnĀ+nB̄ ,

such that for any numerical realization (Ã, B̃) with [pÃ,pB̃] ∈ RnĀ+nB̄ \ V , Ã has k

nonzero, simple and controllable modes.

Proof. See Appendix A.1.

2.3.2 Symmetric Structural Controllability

We have shown that irreducibility guarantees that generically all non-zero simple modes

of (Ã, B̃) are controllable. Subsequently, to characterize the controllability, it remains

to find conditions to ensure that generically all the zero modes are also controllable.

In this subsection, Theorem 1 proposes conditions guaranteeing that generically both
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the nonzero and zero modes of (Ã, B̃) are controllable, therefore establishes a graph-

theoretic necessary and sufficient condition for structural controllability in symmetrically

structured system.

Theorem 1. Let (Ā, B̄) be a structural pair, with Ā being a symmetrically structured

matrix, and let X be the set of state vertices in G(Ā, B̄). The structural pair (Ā, B̄) is

structurally controllable, if and only if, the following conditions hold simultaneously in

G(Ā, B̄) :

1. all the state vertices are input-reachable;

2. |N (S)| ≥ |S|, ∀S ⊆ X .

Proof. See Appendix A.1.

Notice that Conditions 1) and 2) in Theorem 1 admits a similar form as the conditions

for structural controllability (see, for example [31]). Subsequently, if a structural pair

with symmetric parameter dependencies is structurally controllable, then the structural

pair with the same structural pattern without symmetric parameter dependencies, will

also be structurally controllable. However, the converse cannot be trivially derived due

to symmetric parameter dependencies in Assumption 1.

2.3.3 Symmetric Structural Target Controllability

We now extend the solution approach in Theorem 1 to establish graph-theoretic neces-

sary and sufficient conditions for structural target controllability of the given structural

pair (Ā, B̄) and target set T .

Theorem 2. Consider a structural pair (Ā, B̄), with Ā being symmetrically structured,

and a target set T ⊆ [n]. Let XT be the set of state vertices corresponding to T in

G(Ā, B̄). The structural pair (Ā, B̄) is structurally target controllable with respect to T ,

if and only if, the following conditions hold simultaneously in G(Ā, B̄) :

1. all the states vertices in XT are input-reachable;

2. |N (S)| ≥ |S|, ∀S ⊆ XT .
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Proof. See Appendix A.1.

Remark 3. Condition 2) in Theorem 2 can be verified using local topological information

in the network. In particular, this condition is satisfied if there exists a matching in

the bipartite graph B(S1,S2, ES1,S2) associated with G(Ā, B̄), where S1 = X ∪ U and

S2 = XT , such that all vertices in S2 are right-matched. The existence of such a matching

can be verified in O(
√
|S1 ∪ S2||ES1,S2 |) time [154, §23.6].

Through the proof of Theorem 2, we notice that the characterization of structural tar-

get controllability relies on the assumption that the state matrix is symmetric. More

specifically, since the state matrix is symmetric, the eigenvectors of the state matrix

form a complete basis of the state space, which allows us to generalize the PBH test in

the context of target controllability problems. On the contrary, when the system is char-

acterized by a directed network, the state matrix A is, in general, non-diagonalizable,

which prevents us from generalizing PBH test to characterize the target controllability

problems - see [48, Example 3] for a reference.

In addition, the proof of Theorem 2 suggests that, even for the case where Ā is not sym-

metrically structured, the violation of either Conditions 1) or 2) results in that (Ā, B̄) is

not structurally target controllable. Therefore, in general, when the structured matrix

Ā ∈ {0, ?}n×n is not symmetrically structured, the Conditions 1) and 2) in Theorem 2

are necessary but not sufficient conditions for the structural target controllability of the

pair (Ā, B̄).

2.4 Extensions to Structural Output Controllability

Next, we utilize the developed framework to analyze a more general notion of control-

lability, defined as follows.

Definition 3 (Structural Output Controllability). A structural triple (Ā, B̄, C̄) is struc-

turally output controllable if there exists a numerical realization (Ã, B̃, C̃) such that the

output controllability matrix Q(Ã, B̃, C̃) = C̃[B̃, ÃB̃, · · · , Ãn−1B̃] has full row rank.

25



Notice that structural target controllability is a special case of structural output con-

trollability [44], provided that C takes the particular form in (2.4). In the context of

output controllability, each output is regarded as a weighted linear combination of a col-

lection of states. This underlying connection between structural target controllability

and structural output controllability motivates us to use the results we have developed

to provide necessary and sufficient conditions for structural output controllability.

By utilizing Theorem 2 and arguing the relationship between a target set and the state-

to-output connections characterized by the output matrix C, we can characterize graph-

theoretic conditions for (symmetric) structural output controllability, as shown in the

following theorem.

Theorem 3. Consider a structural system (Ā, B̄, C̄), where Ā is a symmetrically struc-

tured matrix, while B̄, C̄ are structured matrices. The structural system (Ā, B̄, C̄) is

structurally output controllable, if and only if, the following conditions hold simultane-

ously:

1. there exists a target set T ⊆ [n] such that (Ā, B̄) is structurally target controllable

with respect to T ;

2. there is no right-unmatched vertex in B(XT ,Y, EXT ,Y), where Y = {yi}ki=1, XT =

{xi ∈ X : i ∈ T }, and EXT ,Y = {{xj , yi} : [C̄]ij = ?}.

Proof. See Appendix A.1.

The conditions in Theorem 3 require us to find a target set T for which a matching con-

dition in a bipartite graph B(XT ,Y, EXT ,Y) is satisfied. Naively, there are exponentially

many possible target sets T , implying that it may be computationally challenging to

verify structural output controllability through the conditions in Theorem 3 Indeed, we

show in Theorem 4 that verifying those conditions is NP-hard:

Theorem 4. Consider a structural system (Ā, B̄, C̄), where Ā ∈ {0, ?}n×n is a sym-

metrically structured matrix. The problem of verifying the necessary and sufficient con-

ditions in Theorem 3 is NP-hard.
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Proof. See Appendix A.1.

2.5 Illustrative Examples

2.5.1 Examples on Symmetric Structural Controllability

In this section, we provide an example to illustrate our necessary and sufficient conditions

in Theorem 1 and Theorem 2. We consider a symmetrically structured system with 10

states and 2 inputs modeled by an undirected network with unknown link weights. The

structural representations of its state and input matrix are denoted by Ā ∈ {0, ?}10×10

and B̄ ∈ {0, ?}10×2, as follows.

Ā =



0 a12 0 a14 a15 0 0 0 0 0

a12 0 a23 0 0 0 0 0 0 0

0 a23 0 a34 0 0 0 0 0 0

a14 0 a34 0 0 0 0 0 0 0

a15 0 0 0 0 0 a57 0 0 0

0 0 0 0 0 a66 a67 0 0 0

0 0 0 0 a57 a67 0 0 a79 0

0 0 0 0 0 0 0 0 a89 0

0 0 0 0 0 0 a79 a89 0 a910

0 0 0 0 0 0 0 0 a910 0



, B̄ =



0 b12

b21 0

0 0

0 0

0 b52

0 0

0 0

0 0

0 0

0 0



.

In addition, we let the target set be T = {2, 6, 8}. Subsequently, CT , defined according

to (2.4), is equal to

CT =


0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0

 .

We also associate the structural pair (Ā, B̄) with the digraph G(Ā, B̄) = (X ∪U , EX ,X ∪

EU ,X ) as depicted in Figure 5-1, where X = {x1, . . . , x10}, U = {u1, u2} and XT =

{x2, x6, x8}. Notice that by letting S = {x8, x10}, we have N (S) = {x9}. As a re-
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Figure 2-1: The digraph representation of the structural pair (Ā, B̄), where the red
and black vertices represent input and state vertices, respectively. The black arrows
represent edges in G(Ā, B̄).

sult, according to Theorem 1, ∃S ⊆ X , |N (S)| < |S| implies that the system is not

structurally controllable.

However, since all the vertices in XT are input-reachable, and |N (S)| ≥ |S|, ∀S ⊆ XT ,

by Theorem 2, (Ā, B̄) is structurally target controllable with respect to T . This example

also shows that, if the input-reachability of the vertices in XT is guaranteed, then the

structural target controllability in undirected networks can be verified by only local

topological information.

2.5.2 Examples on Symmetric Structural Output Controllability

In this subsection, we provide an example to illustrate Theorems 2 and 3 We consider a

symmetrically structured system with 7 states, 2 inputs, and 3 outputs. Let the target

set be T = {2, 4, 6}. The structural representations of the state, input, output, and

target matrices are,

Ā =


0 a12 a13 a14 0 0 0
a12 0 0 0 0 0 0
a13 0 0 0 0 0 0
a14 0 0 a44 0 0 0
0 0 0 0 0 a56 a57
0 0 0 0 a56 0 a67
0 0 0 0 a57 a67 0

 , B̄ =


b11 0
0 0
0 0
0 b42

0 b52
0 0
0 0

 ,
C̄ =

[ 0 c12 0 c14 0 0 0
0 0 0 c24 0 0 0
0 0 0 c34 0 c36 c27

]
, CT =

[
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0

]
.

We also associate the structural pair (Ā, B̄) with the mixed graph G(Ā, B̄) = (X ∪

U , Eu(Ā), EU ,X ), depicted in Figure 5-1, where X = {xi}7i=1, U = {u1, u2} and XT =

{x2, x4, x6}. Notice that by letting S = {x2, x3}, we have N (S) = {x1}. As a re-
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Figure 2-2: The subfigure (a) is the mixed graph representation of the structural pair
(Ā, B̄), where the red and black vertices represent input and state vertices, respectively.
The black lines and arrows represent edges in G(Ā, B̄); The subfigure (b) is the bipartite
graph B(XT ,Y, EXT ,Y), where XT = {x2, x4, x6} and Y = {y1, y2, y3}. The black and
blue vertices are target vertices XT and output vertices Y, respectively.

sult, according to Theorem 1, ∃S ⊆ X , |N (S)| < |S| implies that the system is not

structurally controllable. However, since all the vertices in XT are input-reachable, and

|N (S)| ≥ |S|, ∀S ⊆ XT , by Theorem 2, (Ā, B̄) is structurally target controllable with

respect to T . This example also shows that, if the input-reachability of the vertices in

XT is guaranteed, then the structural target controllability in undirected networks can

be verified by only local topological information. Finally, to verify the structural output

controllability, we notice that there exists a target set T = {2, 4, 6} such that (Ā, B̄) is

structurally target controllable with respect to T and there is no right-unmatched ver-

tices with respect to any maximum matching in B(XT ,Y, EXT ,Y), where Y = {y1, y2, y3}

is the set of output vertices. By Theorem 3, (Ā, B̄, C̄) is structurally output control-

lable.
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Chapter 3

Topology Design in Asymmetric

Linear Structural Systems

Structural controllability extends the classical controllability concept to the case of net-

works with uncertain edges and it is a generic property, i.e., a structural system is

structurally controllable if it is controllable for almost all realizations of edge weights.

Subsequently, whenever a system is not structurally controllable, one cannot retain con-

trollablity by designing the weights of parameters. In order to retain controllability, it

is necessary to perturb the structure of the system. In this chapter, we consider the

perturbation in the form of edge additions. More precisely, given a structurally uncon-

trollable system, we aim to add new directed edges to the system to retain structural

controllablity. It is worth noting that we do not consider symmetric parameter depen-

dencies in this chapter, and the case when symmetric constraint is concerned will be

explored later in Chapter 4.

The rest of this chapter is organized as follows. A formal description of the problem

under consideration are introduced in Section 3.1. Preliminaries on graph theory and

structural system theory are introduced in Section 3.2. The main results are provided

in Section 3.3. In Section 3.4, we illustrate our results in several complex network

topologies.
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3.1 Problem Statements

The dynamics of a linear networked dynamical system can be described as follows:

ẋ(t) = Ax(t) +Bu(t), (3.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector, A ∈ Rn×n is the

state transition matrix and B ∈ Rn×m is the input matrix. In the sequel, we refer to the

system (3.1) by the matrix pair (A,B), and if the system is controllable, we say that the

pair (A,B) is controllable. Furthermore, we define Ā ∈ {0, 1}n×n to be the structural

pattern of A, i.e., Āij = 0 if [A]ij = 0, and Āij = 1 otherwise. Similarly, B̄ ∈ {0, 1}n×m

encodes the sparsity pattern of B where B̄ij = 0 of [B]ij = 0, and B̄ij = 1 otherwise.

We say that the structural pattern (Ā, B̄) is structually controllable if there exists a pair

(Â, B̂) with the same structural pattern as (Ā, B̄) that is controllable – see Definition 1

or [157]. Furthermore, if such pair (Â, B̂) exists, then almost all possible matrix pairs

with the same structural pattern as (Ā, B̄) are controllable [157].

Given a structurally uncontrollable pair (Ā, B̄), we are interested in the problem of

adding a minimum number of entries in Ā to obtain a structurally controllable system.

Intuitively, if we add sufficient edges in the network such that the resulting network is

a complete graph, then the resulting system is structurally controllable, provided that

at least one node is actuated, i.e., B̄ 6= 0. Nonetheless, adding new edges corresponds,

in practice, to building new infrastructure. Therefore, from a design and implementa-

tion perspective, one seeks to add the minimum number of edges to attain the design

objective, which, in our case, consists in ensuring structural controllability. Formally,

the problem is described as follows:

Problem 2. Given the pair (Ā, B̄) with B̄ 6= 0, find

Ã∗ = arg min
Ã∈{0,1}n×n

‖Ã‖0 (3.2)

s.t. (Ā+ Ã, B̄) is structurally controllable,
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where ‖Ã‖0 denotes the number of non-zero entries in a matrix Ã, and the operator + :

{0, 1}n×n × {0, 1}n×n → {0, 1}n×n is the element-wise exclusive-or for binary matrices.

◦

If (Ā + Ã, B̄) is structurally controllable, we refer to the matrix Ã as a feasible edge-

addition matrix, and to Ã∗ in (3.2) as the optimal edge-addition matrix. As part of the

solution proposed in this paper, we provide a characterization of all possible optimal

edge-addition matrices by resorting to graph-theoretical tools. Further, we provide a

polynomial-time algorithm to obtain one such solution.

3.2 General Structural Controllability

In the rest of the chapter, we adopt standard notations in graph theory introduced in

Subsection 2.1.2 of Chapter 2. Furthermore, to introduce our problem, we recall the

following definitions from Subsection 2.2 in Chapter 2.

Given a structural pair (Ā, B̄), we associate a directed graph G(Ā, B̄) = (X ∪U , EX ,X ∪

EU ,X ), which we refer to as the system digraph, where X = {x1, . . . , xn} and U =

{u1, . . . , um} denote the set of state vertices and input vertices. Moreover, the sets

EX ,X = {(xi, xj) : [Ā]ji 6= 0} and EU ,X = {(uj , xi) : [B̄]ij 6= 0} denote the edge sets of G.

In the remaining of this chapter, unless otherwise specified, a state vertex being reach-

able means that it is reachable from some input vertex. Similarly, a vertex set is

reachable if every vertex in the set is reachable. Also, due to the graph represen-

tation of the pair (Ā, B̄), when (Ā, B̄) is structural controllable, we interchangeably

say that G(Ā, B̄) is structurally controllable. In addition, we can associate an undi-

rected bipartite graph with G(Ā, B̄), called the system bipartite graph and denoted

by B(Ā, B̄) = B(X+ ∪ U+,X−, EX+,X− ∪ EU+,X−), in which {x+
i , x

−
j } ∈ EX+,X− if

(xi, xj) ∈ EX ,X , and {u+
i , x

−
j } ∈ EU+,X− if (ui, xj) ∈ EU ,X .

For ease of notation, we use a signal-notation mapping s : EX ,X∪EU ,X → EX+,X−∪EU+,X−

to map edges from the system digraph into edges of the system bipartite graph, as
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follows: s((ui, xj)) = {u+
i , x

−
j } and s((xi, xj)) = {x+

i , x
−
j }. In addition, due to the

bijectivity of the signal-notation mapping, we have that s−1({u+
i , x

−
j }) = (ui, xj) and

s−1({x+
i , x

−
j }) = (xi, xj).

The concepts introduced in this section can be used to determine if a structural system

is structurally controllable, as follows:

Theorem 5 ([34, 49]). The pair (Ā, B̄) is structurally controllable if and only if the

following two conditions hold:

(a) every state vertex x ∈ X in the system digraph G(Ā, B̄) = (X ∪ U , EX ,X ∪ EU ,X ) is

reachable (from some input vertex u ∈ U);

(b) any maximum matching M of the system bipartite graph

B(Ā, B̄) = B(X+ ∪ U+,X−, EX+,X− ∪ EU+,X−)

has no right-unmatched vertices. �

Notice that both conditions in Theorem 5 can be verified in polynomial time [34]. Hence,

one could naively try to ensure both conditions by adding edges iteratively, but such an

approach is, in general, non-optimal and does not provide optimality guarantees.

3.3 Minimum Edge Addition for Structural Controllabil-

ity

In this section, we provide the main results of the paper. First, in Section 3.3.1, we refor-

mulate Problem 2 as a graph-theoretical problem. Next, in Section 3.3.2, we sharpen our

intuition by exploring two particular network topologies. In Section 3.3.3, we show that

iterative solutions are sub-optimal. Next, using graph-theoretical tools, we characterize

the set of feasible solutions to Problem 1 (Theorem 6). Subsequently, we obtain a feasible

solution containing the minimum number of additional edges to ensure structural con-

trollability (Theorem 7). Finally, we provide a polynomial-time algorithm (Algorithm 8)
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to obtain an optimal solution to Problem 2, whose correctness and computational com-

plexity are proved in Theorem 8.

3.3.1 Graph-theoretical Optimization Problem

At a first glance, Problem 2 may seem a purely combinatorial problem. Naively, one

may find a solution by exhaustively exploring the set of n×n binary matrices. However,

Theorem 5 can be leveraged to shrink the search domain of (3.2). This motivates us to

recast (3.2) as the following graph-theoretical problem.

Recall that the system digraph is given by G(Ā, B̄) = (X ∪ U , EX ,X ∪ EU ,X ). Therefore,

given a feasible edge-addition matrix Ã, we can associate a digraph with the perturbed

structural system (Ā+ Ã, B̄), which we denote by G(Ā+ Ã, B̄) = (X ∪U , EX ,X ∪EU ,X ∪

Ẽ), where the edge set Ẽ ⊆ X × X is such that (xi, xj) ∈ Ẽ if and only if Ãji = 1.

Subsequently, since there is an one-to-one correspondence between Ẽ and the structural

matrix Ã, we can provide the following equivalent formulation of Problem 1:

Problem 3. Given the system digraph G(Ā, B̄) = (X ∪ U , EX ,X ∪ EU ,X ), find

Ẽ∗ = arg min
Ẽ⊆X×X

|Ẽ |

s.t. G(Ā+ Ã, B̄) = (X ∪ U , EX ,X ∪ EU ,X ∪ Ẽ)

is structurally controllable.

Additionally, we define a feasible edge-addition configuration as a set of edges that is a

feasible solution of Problem 3. Also, an optimal edge-addition configuration is defined

as an optimal solution of Problem 3.

3.3.2 Special Cases

Next, before showing that iterative strategies can be suboptimal, we discuss two special

cases to sharpen our intuition. First, recall that according to Theorem 5, the pair (Ā, B̄)

is structurally controllable, if and only if, two conditions are satisfied. Therefore, we

34



explore two special cases, where in each case only one of the conditions in Theorem 5 is

satisfied; hence, only the remaining condition needs to be ensured to attain feasibility.

Case I : Consider a structured system (Ā, B̄) such that only Condition (a) in Theo-

rem 1 holds, while Condition (b) is not satisfied. In other words, all state vertices

are reachable while there exists a maximum matching of the system bipartite graph

with right-unmatched vertices. As a result, the cardinality of a maximum match-

ing M with respect to B(Ā, B̄) is strictly less than n. Subsequently, let us denote

by UL = {vli : i ∈ {1, . . . , nl}} and UR = {vri : i ∈ {1, . . . , nr}} the left- and right-

unmatched vertices associated with a maximum matching M , respectively. In partic-

ular, notice that nl ≥ nr since |X+ ∪ U+| ≥ |X−|, and |M | = n − nr. Therefore,

to ensure that G(Ā + Ã, B̄) is structurally controllable, it is sufficient to add edges

between UL and UR without common end-points and such that all right-unmatched

vertices belong to one of such edges. However, such approach is not necessarily a solu-

tion to Problem 3 since some of the newly considered edges may correspond to edges

between input and state vertices, while we are only allowed to connect pairs of state

vertices. Consequently, let (without loss of generality) UXL = {vli : i ∈ {1, . . . , nr}} ⊆ UL

be the set of nr left-unmatched state vertices. Therefore, an optimal edge-addition

configuration can be obtained as E∗ = {(vli, vri ) : vli ∈ UXL , v
r
i ∈ UR, i ∈ {1, . . . , nr}}.

In other words, M ∪ E∗ is a maximum matching with respect to the bipartite graph

B(Ā+ Ã, B̄) without right-unmatched vertices, which implies that Theorem 5-(b) holds.

Thus, Ẽ∗ = {s−1({vli, vri })) : {vli, vri } ∈ E∗} is an optimal solution to Problem 3. Since

there may exist multiple maximum matchings of the system bipartite graph, the optimal

edge-addition configuration constructed using the above procedure may not be unique.

However, the number of right-unmatched vertices are the same for all maximum match-

ings due to maximality. As a result, in this case, all optimal edge-addition configurations

contain nr edges. ◦

Remark 4. Under the assumption that all state vertices in the system digraph are

reachable, Problem 1 can be also solved via an integer program, as proposed in [56]. �

Case II : Suppose that a network (Ā, B̄) is such that Condition (b) in Theorem 1 holds,
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while Condition (a) does not, i.e., some state vertex might be unreachable in G(Ā, B̄).

Since at least one state vertex is assumed to be actuated (i.e., B̄ 6= 0), the set of reachable

state vertices is non-empty. Therefore, we propose to partition the state vertices of the

system digraph into two disjoint sets according to their reachability. Let R1 and N be

the sets containing all the reachable and unreachable state vertices, respectively. Then,

we define Gr (respectively, Gu) as the R1-induced (respectively, N -induced) subgraph.

Now, notice that if an edge is added to ensure the reachability of any vertex v in

some source SCC in Gu (i.e., the tail of the edge is a reachable state vertex), then

all state vertices reachable from this particular source SCC become reachable as well.

Consequently, to ensure reachability of all state vertices, it is sufficient to add edges to

ensure reachability of one vertex per each unreachable source SCCs. Additionally, it is

also necessary to have an edge pointing towards each source SCC in Gu, since otherwise

the vertices belonging to it remain unreachable. Therefore, we first need to identify the

source SCCs in the DAG associated with the unreachable subgraph Gu (these source

SCCs can be efficiently found using, for example, [154]). Also, without loss of generality,

assume there are r of these source SCCs, whose vertex sets are denoted by Sj ⊆ N ,

j = 1, . . . , r. Subsequently, to ensure the reachability of all state vertices in N , we need

to add r edges which tails are in a reachable vertex and each head points towards one

of the vertices in one of the r source SCCs. Thus, the set Ẽ∗ = {(vr, vj) : vr ∈ R1, vj ∈

Sj , j ∈ {1, . . . , r}} is an optimal edge-addition configuration. Notwithstanding, notice

that Ẽ∗ does not characterize all possible optimal edge-addition configurations, since

when an edge is added from a reachable vertex towards an unreachable source SCC,

all state vertices reachable from this particular source SCC become reachable; thus, the

tail of an edge in an optimal edge-addition configuration should be in R1 and its head

should be in an unreachable source SCC. ◦

From Case I, we notice that selecting new edges for the edge-addition configuration do

not increase the number of right-unmatched vertex associated with the system bipartite

graph. Similarly, adding more edges never decreases the number of reachable state

vertices in the system digraph. As a consequence, one may select edges to ensure both
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Figure 3-1: In (a), we illustrate a system digraph G({u, x1, x2}, {(u, x1)}) with three
vertices and one edge depicted in black. The goal is to find the smallest subset of state
edges (depicted by red edges) to ensure structural controllability. Let us consider the
iterative strategy described in Subsection 3.3.3. In (b), we depict a possible solution to
the first step described in Case I, i.e., the edge (x2, x2) suffices to satisfy Theorem 5-(b).
In (c), we depict a possible solution to the second step described in Case II when the
system digraph considered is the one depicted in (b). In contrast, the edge (x1, x2)
suffices to satisfy Theorem 5-(a), resulting in the system digraph in (d).

conditions in Theorem 1 are satisfied iteratively. Nonetheless, such a selection scheme

often leads to sub-optimal solutions, as we show next.

3.3.3 Iterative Solutions are Sub-optimal

In order to motivate the need for an algorithm that solves a general instance of the

problem proposed in Problem 3, we describe below a naive iterative approach leading

to suboptimal solutions. The steps in this iterative algorithm are based on the cases

described in Section 3.3.2. Specifically, each iteration consists of a two-stage process. In

the first stage, we find the minimum number of edges required to satisfy Theorem 5-(b)

using the methodology described in Case I. The second stage in each iteration is de-

scribed in Case II, whose aim is to satisfy Condition (a) in Theorem 5.

To show how this iterative approach can lead to suboptimal solutions, we show in

Figure 3-1 an instance where we initially use the method proposed in Case I to ensure

that Theorem 5-(b) holds, followed by the method proposed in Case II is applied to

ensure Theorem 5-(a). As we explain in the caption of Figure 3-1, the naive strategy

requires two edges, whereas the digraph depicted in Figure 3-1-(d) is also feasible and
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Figure 3-2: In (a), we illustrate a system digraph G({u, x1, x2, x3}, {(u, x1)}) in black.
The goal is to find the smallest subset of state edges (depicted by red) to ensure structural
controllability. Let us consider the iterative strategy described in Subsection 3.3.3. In
(b), we depict a possible solution to the first step described in Case II. In (c), we depict
a possible solution to the second step, which was computed by performing the solution
described in Case I when the system digraph considered is the one depicted in (b).
In contrast, the edge (x2, x3) suffices to satisfy Theorem 5-(b), resulting in the system
digraph in (d).

requires only one edge. Alternatively, in Figure 3-2, we provide an instance where the

strategy adopted aims first to ensure Theorem 5-(a), followed by Theorem 5-(b), using

the solutions in Case II and Case I, respectively. Again, in this case, the naive strategy

requires three edges, whereas the digraph depicted in Figure 3-2-(d) is also feasible and

requires only two edges. In summary, naive strategies are (in general) sub-optimal.

3.3.4 General Case

Hereafter, we characterize the solutions to Problem 3 when no assumptions are made

on the topology of the network. First, we introduce a definition required to characterize

the smallest collection of edges needed to attain reachability, i.e., satisfy Condition (a)

in Theorem 5. In order to introduce this definition, we need to define the following

notation. Let G(Ā, B̄) = (X ∪ U , EX ,X ∪ EU ,X ) be the system digraph, and partition

the set of state vertices X into two sets based on their reachability (from an input),

namely, X = R1 ∪ N , where R1 is the set of reachable vertices and N is the set of

unreachable vertices. Additionally, without loss of generality, let us assume there are r

source SCCs that are unreachable, which vertex sets are denoted by N1, . . . ,Nr ⊆ N .

Also, let ∆(Nh) denote the set of vertices that are reachable in G(Ā, B̄) from the vertices

in Nh, for h = 1, . . . , r.
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Definition 4. A set SB is called a set of bridging edges if it can be generated by the

following recursive algorithm:

Algorithm 1: Set of bridging edges

Input: Sets R1 and N1, . . . ,Nr;
1: Initialize K = {1, . . . , r}, t1 as any value in K, and the set SB = {(i, j)},

where i is any vertex in R1 and j is any vertex in Nt1 ;
2: for k = 2 : r do
3: Rk ← Rk−1 ∪∆(Ntk−1

);

4: Assign tk to any value in K \
⋃k−1
h=1{th};

5: SB ← SB ∪ {(i, j)} for any i ∈ Rk and any j ∈ Ntk ;
6: end for

Algorithm 1 is illustrated in Figure 3-3. In particular, notice that at the end of this

algorithm N =
⋃r
h=1 ∆(Ntk), which implies that all unreachable states become reach-

able. Furthermore, notice that the set of bridging edges contains the minimum number

edges required to ensure that all state vertices are reachable. In fact, it readily follows

that the solutions to Case II in Section 3.3.2 can be characterized by the possible sets

of bridging edges. Furthermore, the set of bridging edges only ensure Condition (a) in

Theorem 5, which is not sufficient to ensure structural controllability in general. More

specifically, to ensure structural controllability and, subsequently, to obtain a feasible

edge-addition configuration, two types of edges are required: (i) a set of bridging edges,

and (ii) edges that connect left-unmatched state vertices to right-unmatched vertices in

some maximum matching associated with the system bipartite graph (recall Case I in

Section 3.3.2). In what follows, we state necessary and sufficient conditions to obtain a

feasible edge-addition configuration:

Theorem 6. Let G(Ā, B̄) be a system digraph and B(Ā, B̄) be its bipartite repre-

sentation. Furthermore, let M be a maximum matching associated with B(Ā, B̄) and

UL(M) = {vli : i ∈ {1, . . . , nl}} and UR(M) = {vri : i ∈ {1, . . . , nr}} be the left- and right-

unmatched vertices of M . Without loss of generality, let UXL (M) = {vli : i ∈ {1, . . . , nr}}

denotes the set of nr left-unmatched state vertices of M . A set Ẽ is a feasible edge-

addition configuration if and only if it contains the union of the following two sets:

(a) SB is the set of bridging edges; and
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Figure 3-3: This figure provides an illustration of Algorithm 1. All vertices (blue or
black), together with all black edges, form the initial system digraph G(Ā, B̄). The
black vertices, except the input vertex u, constitute the set of reachable state vertices R1

(enclosed by the black dashed ellipsoid). Blue vertices constitute the set of unreachable
state vertices N . The unreachable state source SCCs, N1 and N2, are contained in
red dashed squares. In Figure (a), we depict one possible result for Algorithm 1. In
the initialization step, our algorithm initializes SB as the set containing edge e1 only.
Subsequently, after e1 is added to SB, all the states reachable from N1 become reachable
(we encircle these reachable states by a blue dashed ellipsoid in Figure (a)). Afterwards,
in the FOR loop, edge e2 in Figure (a) is added to SB (in Step 5 of Algorithm 1), resulting
in a digraph in which all vertices are reachable from the input node. An alternative
output of Algorithm 1 is plotted in Figure (b). Notice that both in Figures (a) and
(b), all vertices are reachable after adding two red edges. Therefore, SB = {e1, e2} and
S′B = {e′1, e′2} are two possible sets of bridging edges.

(b) SM = {s−1({vli, vri }) : vli ∈ UXL (M), vri ∈ UR(M), and i = {1, . . . , nr}}, for some

maximum matching M associated with the system bipartite graph.

�

Proof. See Appendix A.2.

From Theorem 6, we can readily obtain a lower-bound on the number of edges in a

feasible edge-addition configuration.

Corollary 2. The cardinality of an optimal edge-addition configuration Ẽ∗ satisfies

|Ẽ∗| ≥ max{nr, r}, where nr is the number of right-unmatched vertices of any given

maximum matching M associated with the system bipartite graph B(Ā, B̄), and r is the

number of unreachable state source SCCs in the DAG associated with the system digraph

G(Ā, B̄). �

Proof. See Appendix A.2.
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In particular, it is easy to verify that the equality in Corollary 2 is ensured when both

special cases addressed in Section 3.3.2 are considered.

Although Theorem 6 characterizes feasible edge-addition configurations, we seek to find

a feasible edge-addition configuration of minimum cardinality. To achieve this goal, we

notice that it is preferable to obtain a maximum matching whose set of right-unmatched

vertices are spread across different unreachable source SCCs. This is because the edges

connecting left- to right-unmatched vertices in this particular maximum matching are

useful to simultaneously satisfy both Conditions (a) and (b) in Theorem 6. To formalize

this reasoning, we introduce the following concept.

Definition 5. Let G(Ā, B̄) be the system digraph and M be a maximum matching

associated with its bipartite representation B(Ā, B̄). Furthermore, denote by UR(M) the

set of right-unmatched vertices of M . An unreachable state source SCC of the DAG

associated with the system digraph G(Ā, B̄) is said to be unreachable-assignable if it

contains at least one right-unmatched vertex in UR(M). �

Whether an unreachable state source SCC S is unreachable-assignable depends on the

specific maximum matching M . In other words, given two sets UR(M1) and UR(M2) of

right-unmatched vertices associated with two different maximum matchings M1 and M2,

it is possible that UR(M1) contains a vertex from S while UR(M2) does not. We introduce

the following definition to characterize the maximum number of possible unreachable-

assignable state source SCCs.

Definition 6. The unreachable source assignability number (USAN) of the system di-

graph G(Ā, B̄) is defined as the maximum number of unreachable-assignable state source

SCCs among all the maximum matchings associated with the system bipartite graph

B(Ā, B̄). �

Remark 5. According to Definition 6, for every system digraph G(Ā, B̄), the USAN

must be less or equal to the number of right-unmatched vertices associated with any

maximum matching of the B(Ā, B̄) and the total number of unreachable state source

SCCs in G(Ā, B̄). �

To find a maximum matching associated with the system bipartite graph that attains
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Algorithm 2: Maximum matching attaining the USAN

Input: A system digraph G(Ā, B̄);
Output: A maximum matching M attaining the USAN;

1: Partition the set of state vertices in the system digraph G(Ā, B̄) based on their
reachability. Obtain the set containing all the unreachable vertices of G(Ā, B̄),
denoted as N , and its N -induced subgraph, denoted as Gu.

2: Obtain the source SCCs of Gu and denote their vertex sets as N1, . . . ,Nr,
where r is the total number of source SCCs in Gu;

3: Define a vertex set I = {γ1, . . . , γr} comprising r slack vertices. Construct a
weighted bipartite graph Bw = B(X+ ∪ U+ ∪ I,X−, EX+,X− ∪ EU+,X− ∪ EI),
where EI =

⋃r
i=1{{γi, x

−
j } : xj ∈ Ni}. The weights in Bw are as follows: every

edge in EX+,X− ∪ EU+,X− is assigned to have unit weight, whereas every edge
in EI has weight two;

4: Let M ′ be the minimum-weighted maximum matching of Bw;
5: Return M = M ′ \ EI .

the USAN, one can naively enumerate all possible maximum matchings associated with

B(Ā, B̄), but this approach incurs into a problem that is computationally ]P -complete1

[158]. Instead of using an exhaustive search, it is possible to determine in polynomial-

time a maximum matching attaining the USAN using the following algorithm.

Remark 6. The proof of correctness of the algorithm described above is very similar to

the proof of Theorem 11 in Section VI of [49]. �

Essentially, in order to find a maximum matching attaining the USAN, we associate

a slack vertex γi with each unreachable source SCC Ni. We create additional edges

from each slack vertex to every state vertex of its corresponding SCC. In other words,

we let EI =
⋃r
i=1{{γi, x

−
j } : xj ∈ Ni}. Next, we set the weights of edges EI higher

than the weights of edges in B(Ā, B̄). With this particular selection of weights, the

minimum-weighted maximum matching M ′ prefers selecting edges in B(Ā, B̄) to edges

in EI . In particular, edges are selected from EI if it helps to increase the matching. As a

consequence, the vertices that are matched using edges in EI must correspond to right-

unmatched vertices in the matchingM ′\EI . Furthermore, these right-unmatched vertices

are spread across different unreachable source SCCs. Finally, due to maximality of

matching, we can ensure that M achieves the USAN. To further illustrate the algorithm,

1The class of ]P -complete problems is a class of computationally equivalent counting problems that
are at least as difficult as the NP-complete problems.
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Figure 3-4: This figure presents an example illustrating Algorithm 2. The black vertices
and edges in (a) form the initial system digraph G(Ā, B̄). In this case, N = {x2, x3, x4}
is the set of unreachable state vertices. Moreover, there is only one unreachable source
SCC, whose vertex set is N1 = {x2, x3}. The black vertices and edges in (b) con-
stitute the original system bipartite graph B(Ā, B̄), while the blue vertex γ1 repre-
sents a slack variable associated with N1. In addition, the blue dashed edges {γ1, x2}
and {γ1, x3} together constitute EI . The minimum-weighted maximum matching M ′

of Bw is depicted using red edges in (c). By removing {γ1, x
−
2 } ∈ EI , we have that

M = {{u, x−1 }, {x
+
2 , x

−
3 }, {x

+
3 , x

−
4 }} is a maximum matching of B(Ā, B̄). In (d), we

depict in red the edges from the system digraph G(Ā, B̄) associated with those in the
maximum matching M. Notice that x2 is a right-unmatched vertex of M and it is in
N1; hence, M is a maximum matching attaining the USAN of G(Ā, B̄).

we present an example in Figure 3-4.

Remark 7. Due to maximality, the USAN is unique for every system digraph G(Ā, B̄).

Nonetheless, there may exist multiple maximum matchings that attains this value. Al-

gorithm 2 obtains one particular solution. �

Although the maximum matching that achieves the USAN can be efficiently obtained

as described in Algorithm 2, this is not sufficient to obtain an optimal feasible edge-

addition configuration. To illustrate this claim, let us consider the example depicted

in Figure 3-5. In this case, the optimal feasible edge-addition configuration depends

on the maximum matching achieving the USAN. Specifically, if all the left-unmatched

vertices are unreachable state vertices, then, after fulfilling Condition (b) in Theorem 6,

we should add extra edges to form a set of bridging edges to ensure Condition (a) in

Theorem 6. This would result in a sub-optimal solution.

Since ‖B‖0 6= 0, one can find a path rooted at an input vertex u ∈ U whose end vertex is

some state vertex x ∈ X . Thus, x− is a left-unmatched vertex in the maximum matching

containing the path. Consequently, it is always possible to obtain a maximum matching

associated with B(Ā, B̄) with at least one reachable left-unmatched state vertex – see
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Figure 3-5: This figure presents two examples where different maximum matchings lead
to sets of feasible edge-addition configurations with different cardinalities. The black
vertices and edges in (a) form the initial system digraph G(Ā, B̄). The red edges in (c)
and (e) constitute two different maximum matchings associated with B(Ā, B̄). The red
edges in (b) and (d) are direct graph representations of the edges determined by the
maximum matchings in (b) and (d), respectively. The edge-set Ẽ2 = {(x1, x2)} (depicted
by blue dashed arrows in (d)) is a feasible edge-addition configuration, since the addition
of (x1, x2) ensures both conditions in Theorem 5. In contrast, in Fig. (b) we also need
to add edge (x2, x2) (in addition to (x1, x2)) to ensure that Theorem 6-(b) holds, which
leads to a feasible edge-addition configuration given by Ẽ1 = {(x1, x2), (x2, x2)}. Thus,
Ẽ2 is an optimal edge-addition configuration with cardinality 1 while Ẽ1 is not.

Proof of Theorem 7 in Appendix A.2 for more details. Moreover, when an edge is

added from the reachable left-unmatched vertex to a right-unmatched state vertex in

an unreachable source SCC, the set of reachable state vertices can be extended. We will

use this fact to circumvent the sub-optimality issue mentioned above. In our next result,

we characterize the relationship between the USAN and the optimal value to Problem

3:

Theorem 7. Given the system digraph G(Ā, B̄) and its bipartite representation B(Ā, B̄),

if ‖B̄‖0 > 0, then the cardinality of an optimal edge-addition configuration p∗ = |Ẽ∗|

satisfies

p∗ = nr + r − q, (3.3)

where nr is the number of right-unmatched vertices in any maximum matching associated

with B(Ā, B̄), r is the number of unreachable source state SCCs in the DAG associated

with G(Ā, B̄), and q is the USAN. �

Proof. See Appendix A.2.

In fact, based on the constructive proof of Theorem 7 in Appendix A.2, we propose a
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procedure (described in Algorithm 8) to find an optimal edge-addition configuration in

polynomial-time. Briefly, Algorithm 8 consists of the following four main steps: (Step 1 )

Decompose the system digraph based on the reachability of state vertices. (Step 2 )

Determine a maximum matching that achieves the USAN; if the obtained maximum

matching admits no reachable left-unmatched vertex, then we alter the matching by

finding a path rooted at certain input vertex. (Step 3 ) Based on the obtained maximum

matching, in order to ensure both conditions in Theorem 6, select the edges from reach-

able left-unmatched vertices to right-unmatched vertices in unreachable source SCCs

iteratively. (Step 4 ) If the system is still not structurally controllable, then add the

smallest collection of edges ensuring that both conditions in Theorem 6 hold indepen-

dently. The correctness and computational complexity of this procedure are described

in the following result.

Theorem 8. Given the system digraph G(Ā, B̄) = (X ∪ U , EX ,X ∪ EU ,X ), Algorithm 8

provides an optimal solution to Problem 3. Furthermore, the computational complexity

of Algorithm 8 is O(|X ∪ U|3). �

Proof. See Appendix A.2.

Remark 8. The computational complexity incurred by Algorithm 8 is comparable to that

incurred by the algorithms required to solve the special cases described in Section 3.3.2.

Specifically, the solution to Case I can be determined through the computation of a

maximum matching, whose computational complexity is given by O(
√
|X ∪ U||EX+,X− ∪

EU+,X− |) [154]. Alternatively, the solution to Case II can be obtained by determining the

strongly connected components of the system digraph, which can be obtained by running

a depth-first search algorithm twice [154] and incurring in O(|X ∪ U|2) computational

complexity. A MATLAB implementation of Algorithm 8 can be found in [159]. �

3.4 Simulations

In this section, we illustrate the use of the main results of this paper. In particular, given

a structurally uncontrollable system, we determine the minimum number of additional
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Algorithm 3: Computing an optimal edge-addition configuration Ẽ∗ to Prob-
lem 3

Input: The system digraph G(Ā, B̄);
Output: An optimal edge-addition configuration Ẽ∗;

Step 1: System digraph decomposition
1: Obtain the set of all reachable (resp. unreachable) state vertices R1 (resp. N in
G(Ā, B̄).
Step 2: Maximum matching attaining the USAN

2: Obtain a maximum matching M̄ associated with B(Ā, B̄) attaining the USAN q
using Algorithm 2;

3: if UXL (M̄) ∩R1 = ∅ then
4: Find v such that v ∈ R1 and (u, v) ∈ EU ,X \ M̄ ;
5: Find v̂ such that {v̂+, v−} ∈ M̄ ;
6: M ←

(
M̄ \ {{v̂+, v−}}

)
∪ {{u+, v−}};

7: else
8: Set M equal to M̄ ;
9: end if

Step 3: Add edges to satisfy (a) and (b) in Theorem 6
10: Obtain the unique set of disjoint paths P =

⋃q
i=1 Pi in the matching M , where

the starting vertex of each Pi is in some unreachable source SCC and the end
vertex is a left-unmatched state vertex;
% We remark that the uniqueness of P is a direct consequence of M being a
matching.

11: Construct two sets of vertices S = {s1, . . . , sq} and T = {t1, . . . , tq} such that si
and ti are the starting and ending vertices of each path Pi, respectively;

12: Let Ẽ∗ ← ∅ and k ← 1;
13: if T ∩ R1 = ∅ then
14: Select a t0 such that t+0 ∈ UXL (M) and t0 ∈ R1;
15: for k ≤ q do
16: Ẽ∗ ← Ẽ∗ ∪ {(tk−1, sk)}; k ← k + 1;
17: end for
18: UXL (M)← UXL (M) \ {t+0 , . . . , t

+
q−1};

19: else
20: Find and apply a permutation of the i indexes associated to the paths Pi s.t.

t1 ∈ R1 (accordingly, permute the elements in S and T );
21: for k < q do
22: Ẽ∗ ← Ẽ∗ ∪ {(tk, sk+1)}; k ← k + 1;
23: end for
24: Ẽ∗ ← Ẽ∗ ∪ {(tq, s1)}; UXL (M)← UXL (M) \ T ;
25: end if
26: UR(M)← UR(M) \ S;
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Step 4: Add extra edges to satisfy Theorem 6
27: for v+

l ∈ U
X
L (M) do % to satisfy Theorem 6-(b)

28: if UR(M) 6= ∅ then
29: Ẽ∗ ← Ẽ∗ ∪ {(vl, vr)}, for some v−r ∈ UR(M);
30: UXL (M)← UXL (M) \ v+

l ; UR(M)← UR(M) \ v−r ;
31: end if
32: end for
33: Construct a graph Gaug = (X ∪ U , EX ,X ∪ EU ,X ∪ Ẽ∗). Let Ci, i = 1, . . . , β,

be the vertex-sets of β unreachable source SCCs in the DAG of Gaug.
Additionally, let Raug be the set of all reachable vertices in Gaug;

34: for i = 1 : β do % to satisfy Theorem 6-(a)
35: Ẽ∗ ← Ẽ∗ ∪ {(vi, zi)}, for some vi ∈ Raug, zi ∈ Ci.
36: end for

edges required for ensuring structural controllability in a some artificial network models.

First, in Section 3.4.1, we provide a pedagogical example capturing the outcome of the

different steps of Algorithm 1. In Section 3.4.2, we evaluate the minimum number of

edges required in the context of large-scale randomly generated networks.

3.4.1 Illustrative Example

Consider the pair (Ā, B̄), whose system digraph is depicted in Figure 3-6. Notice that the

system is not structurally controllable since both conditions in Theorem 5 fail to hold.

Therefore, additional edges are required to ensure structural controllability. Towards

this goal, we invoke Algorithm 8 to obtain an optimal edge-addition configuration that

solves Problem 2 given (Ā, B̄). In this algorithm, we need to decompose the system

digraph G(Ā, B̄) according to the reachability of its state vertices. In particular, the set

of reachable state vertices is given by R1 = {x1, . . . , x4}, while the set of unreachable

state vertices is N = {x5, . . . , x10}. Subsequently, we find the unreachable source SCCs,

whose vertex sets are denoted by N1,N2, and N3 in Figure 3-6; hence, the set of states in

unreachable source SCCs is {x5, x7, x8, x10}. Step 2 of Algorithm 8 computes a maximum

matching M̄ using Algorithm 2. In Figure 3-7-(a), we present in red such maximum

matching, whose set of left-unmatched state vertices and right-unmatched vertices are

UXL (M̄) = {x2, x9} and UR(M̄) = {x5, x10}, respectively. Notice that x5 and x10 belong

to two different unreachable source SCCs; hence, the unreachable source assignability
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Figure 3-6: System digraph G(Ā, B̄) containing a single input vertex u and ten state
vertices {x1, . . . , x10} (depicted in black dots). Black arrows correspond to the edges
of G(Ā, B̄). The dashed blue ellipsoid contains all the reachable state vertices, i.e.,
R1 = {x1, . . . , x4}, whereas each red dashed square contains an unreachable source
SCC, whose vertex sets are N1 = {x5}, N2 = {x10}, and N3 = {x7, x8}, respectively.

number (USAN) equals two, i.e., q = 2. As a result, by invoking Theorem 7, it follows

that an optimal edge-addition configuration consists of p∗ = 3 edges.

Now, notice that x2 is a reachable left-unmatched vertex, i.e., x2 ∈ UXL (M̄) ∩ R1.

Thus, Step 2 of Algorithm 8 sets M equal to M̄. To obtain an optimal edge-addition

configuration Ẽ∗, we should add an edge with tail in x2 and head in some right-

unmatched unreachable state vertex. According to M, we obtain P = P1 ∪ P2, where

P1 = {x5, x6, x1, x2} and P2 = {x10, x9}. From P, the set S = {s1 = x5, s2 = x10}

and T = {t1 = x2, t2 = x9} are constructed accordingly. As a result, Step 3 in Al-

gorithm 8 adds the edge (x2, x10) to the edge-addition configuration Ẽ∗. By selecting

this edge, all vertices reachable from x10 become reachable. Subsequently, the algo-

rithm adds (x9, x5) to Ẽ∗, after which Condition (b) in Theorem 6 is satisfied, since

M ∪ Ẽ∗B is a maximum matching of G(Ā + Ã, B̄) without right-unmatched vertices,

where Ẽ∗B = {(x−2 , x
+
10), (x−9 , x

+
5 )} represents the bipartite representation of the edges in

Ẽ∗ in G(Ā+ Ã, B̄).

Finally, it remains to ensure that every state vertex is reachable, i.e., that Condition

(a) in Theorem 6 is satisfied by G(Ā + Ã, B̄). Towards this end, notice that the only

remaining unreachable state source SCC is given by N3 = {x7, x8}. Consequently, it
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Figure 3-7: This figure shows a maximum matching M̄ obtained using Step 2 in Algo-
rithm 8. In (a), we depict the system bipartite graph associated with the pair (Ā, B̄),
whose edges are depicted in black and red (edges in red are those in the maximum
matching M̄). In (b), we depict in red the edges from the system digraph G(Ā, B̄)
associated with those in the maximum matching M̄ .

suffices to add (x1, x7) into Ẽ∗ to ensure their reachability. However, there are multiple

choices of edges to ensure the reachability of N3. More specifically, instead of adding

(x1, x7) into Ẽ∗, one can add any edge (xi, xj) with i ∈ {1, . . . , 6, 10} and j ∈ {7, 8} as

an alternative. In summary, an optimal edge-addition configuration, i.e., a solution to

Problem 3, is given by Ẽ∗ = {(x2, x10), (x9, x5), (x1, x7)}, which contains p∗ = 3 edges,

as prescribed by Theorem 7.

3.4.2 Random Networks

In this section, we explore the minimum number of edges p∗ contained in an optimal

edge-addition configuration Ẽ∗ required to ensure structural controllability of random

networks. We assume that the structure of Ā is generated using an Erdős-Renyi model,
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i.e., [Ā]ij = 1 with probability 0 < pa < 1 for all i, j; 0 otherwise. In our simulations,

the size of Ā is assumed to be n = 1000. We let c ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.5, 2, 3, 4} and

define pa = c
n for every c accordingly. Thus, c represents the average sum of in-degree

and out-degree of each vertex in the graph represented by A. Moreover, we assume B̄

to be a random diagonal matrix with pbn entries equal to 1, and 0 otherwise, where

pb ∈ (0, 1) represents the fraction of vertices to be set equal to 1. With this particular

setup, we examine the value of p∗ as we vary c and pb, independently.

In Figure 3-8, we plot the empirical average of p∗ (over 10 random realizations). Notice

that p∗ decreases as c or pb increase. Intuitively, a larger value of c results in a denser

state digraph. Thus, both conditions in Theorem 5 are more likely to be satisfied.

In other words, the number of right-unmatched vertices associated with the maximum

matching of the system bipartite graph and the number of unreachable state vertices

are smaller as c increases. Furthermore, when pb becomes close to one, almost every

state vertex is actuated by an individual input. Thus, (a) in Theorem 5 holds with high

probability. Since p∗ = nr + r − q, it follows that p∗ decreases as c or pb increase.

To emphasize the effect of varying pb (respectively, c) on the minimum number of addi-

tional edges to ensure structural controllability, we plot in Figure 3-8-(a) (respectively,

Figure 3-8-(b)) the evolution of p∗ when c is fixed (respectively, pb is fixed). In Figure 3-

8-(a), we observe that for a reasonably small value of c (e.g., c = 3), the impact of pb

in the size of the optimal edge-addition configuration is almost negligible. Intuitively,

as c increases towards log(n), the number of isolated vertices in the random subgraph

induced by state vertices decreases. In particular, if c ≈ log(n), then the state digraph

presents a unique giant strongly connected component [160]. Subsequently, p∗ is small

even when there is only one state being actuated by an input. Indeed, in our experi-

ment, p̄∗ = 1.1 when c = 7 and pb = 0.001. In Figure 3-8-(b), we observe an almost

exponential decrease of p∗ with respect to c.
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Figure 3-8: In this figure, we plot the evolution of the average value of p∗ as c and pb
vary. In (a), we fix the value of c and show the evolution of p∗ versus pb, when pb ranges
from 0.1 to 0.8 with step size 0.1. The red, blue, and black lines correspond to c = 0.1,
c = 1.5, and c = 3, respectively. In (b), we plot the evolution of p̄∗ when c varies in the
interval c ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.5, 2, 3, 4}, while fixing pb. The red, blue, and black
lines show the value of p̄∗ when pb = 0.1, pb = 0.5, and pb = 0.8, respectively. In both
figures, the error bars represent the standard deviation of p∗.
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Chapter 4

Topology Design in Symmetric

Linear Structural Systems

In the previous chapter, we have designed an efficient algorithm to add a set of edges

with minimum cardinality in the system digraph to render a structurally controllable

system. Our results is build on graph-theoretical necessary and sufficient conditions for

(asymmetric) structural controllability of a structural pair (Ā, B̄)—see Theorem 5 for

more details. Noticing the similarity between this condition and the graph-theoretical

condition in the case when the state matrix is captured by an undirected graph (Theo-

rem 1), we conjecture that it is possible to leverage the framework developed by Theo-

rem 7 to add minimum number of undirected edges to render a symmetrically structured

system. To solve this problem, we will proceed as follows. First, we first provide a rig-

orous statement of the minimum-cost edge selection problem under consideration in

Section 4.1. In Section 4.2, we provide thorough analysis of the computation complexity

of the minimum-cost edge selection problem and identify a few instances that are solv-

able in polynomial-time. Finally, we present illustrative examples for our algorithms in

Section 4.3.

52



4.1 Problem Statement

Before introducing our problem of interest, let us recall some definitions in structural sys-

tems theory – interested readers are referred to Subsection 2.1.2 for more details. Since

structural controllability problems are defined using the sparsity pattern of the system,

it is natural to consider graph representations. Given a symmetrically structured matrix

Ā, we associate it with a directed graph G(Ā) = (X , E(Ā)), which we refer to as the state

digraph, where X = {xi}ni=1 is the set of state vertices, and E(Ā) = {(xj , xi) : [Ā]ij = ?}

is the set of directed edges1. To capture the symmetrical parameter dependencies,

it is also useful to associate with Ā an undirected graph G(Ā) = (X , Eu(Ā)), where

Eu(Ā) = {{xi, xj} : [Ā]ij = ?, i ≤ j} is the set of undirected edges. Similarly, we asso-

ciate with the structural pair (Ā, B̄) a directed graph G(Ā, B̄) = (X ∪ U , E(Ā) ∪ EU ,X ),

which we refer to the system digraph, where U = {ui}mi=1 is the set of input vertices

and EU ,X = {(uj , xi) : [B̄]ij = ?} is the set of edges from input vertices to state vertices.

Due to the symmetry of A, we also associate with (Ā, B̄) a mixed graph, referred to as

the system mixed graph, G(Ā, B̄) = {X ∪ U , Eu(Ā), EU ,X } containing undirected edges

between state vertices and directed edges from input vertices to state vertices. Given

a target set T ⊆ [n], we say a state vertex xi ∈ X is a target vertex if i ∈ T , and let

XT ⊆ X denote the set of target vertices.

In this chapter, we consider a few design problems aiming to render a structurally target

controllable system:

Problem 4 (Minimum-Cost Edge Selection for Structural Target Controllability). Con-

sider a structural pair (Ā, B̄), where Ā = {0, ?}n×n is symmetrically structured and

[Ā]ij = ? for all i ≤ j. Let G(Ā, B̄) = (X ∪U , Eu(Ā), EU ,X ) be the mixed graph represen-

tation of (Ā, B̄). Consider a target set T ⊆ [n], and a function c : X × X → R≥0 that

assigns a non-negative cost to each undirected edge e in X × X . Find,

Ā? = arg min
Â∈{0,?}n×n

∑
e∈Eu(Â)

c(e),

1We denote directed edges and undirected edges using parentheses (xi, xj) and curly brackets {xi, xj},
respectively
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such that (Â, B̄) is structurally target controllable with respect to T and Â is symmetri-

cally structured.

Notice that structural controllability is a special case of structural target controllabil-

ity when T = [n], thus all solutions to Problem 4 are applicable to design problems

concerning structral controllablity.

We also consider the particular problem of finding the sparsest state matrix to ensure

structural target controllability, as stated below:

Problem 5 (Sparsest State Matrix Design for Structural Target Controllability). Con-

sider a structural pair (Ā, B̄), where Ā ∈ {0, ?}n×n is symmetrically structured. Let

G(Ā, B̄) = (X ∪ U , Eu(Ā), EU ,X ) be the mixed graph representation of (Ā, B̄). Consider

a target set T ⊆ [n], and a cost function c : X × X → {1,∞}, where

c(e) =


1, if e ∈ Eu(Ā),

∞, otherwise.

(4.1)

Find,

Ā? = arg min
Â∈{0,?}n×n

∑
e∈Eu(Â)

c(e),

such that (Â, B̄) is structurally target controllable with respect to T and Â is symmetri-

cally structured.

In addition to these problems, when a structural pair (Ā.B̄) is not structurally control-

lable, one may consider the problem of adding a few edges in order to obtain a (target)

controllable system, as stated below:

Problem 6 (Minimum Edge Addition for Structural Target Controllability). Consider

a structural pair (Ā, B̄), where Ā ∈ {0, ?}n×n is symmetrically structured. Let G(Ā, B̄) =

(X ∪ U , Eu(Ā), EU ,X ) be the mixed graph representation of (Ā, B̄). Consider a target set

T ⊆ [n], and a cost function c : X × X → {0, 1},

c(e) =


0, if e ∈ Eu(Ā),

1, otherwise.

(4.2)

Find,

Ā? = arg min
Â∈{0,?}n×n

∑
e∈Eu(Â)

c(e)
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such that (Â, B̄) is structurally target controllable with respect to T and Â is symmetri-

cally structured.

Notice that both Problem 5 and Problem 6 are special cases of Problem 4, in which

the cost functions are specially adapted to different scenarios. In order to solve these

problems, in the next section, we introduce a few concepts that are crucial in deriving

our results.

4.2 Minimum-cost Edge Selection for Structural Target

Controllability

In this section, we leverage the graph-theoretical conditions provided by Theorem 2 (see

Chapter 2 for more details) to solve several network design problems. More specifically,

given a symmetrically structured pair, we aim to find a set of edges to render a structural

target controllable system incurring in a minimum total cost. We present a thorough

analysis on the computational complexity of this problem under various assumptions on

the cost function and the topology of the system graph. We first show that Problem 4

is NP-hard in general (see Theorems 9 and 10). Nonetheless, we identify a few instances

of the problem that are polynomial solvable (see Theorems 12 and 14). Moreover, we

provide polynomial-time algorithms to obtain an optimal solution to each identified

solvable case (see Algorithms 4 and 6).

4.2.1 NP-Hardness of the Minimum-cost Edge Selection Problem

We first show that the Problem 4 is, in general, NP-hard. A conventional approach to

prove NP-hardness is to reduce a known NP-complete problem to an instance of the

problem of interest. Following this general principle, we design our instance as follows.

First, we consider a specific cost function: c(e) ∈ {1,∞}, ∀e ∈ X × X , i.e., some of the

edges cannot be selected for the design. With this cost function, we aim to seek minimum

number of undirected edges with a unit cost such that both conditions in Theorem 2
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Cost functions and assumptions Complexity

c(e) ∈ {1,∞},∀e ∈ X × X NP-hard

c(e) ∈ {1,∞},∀e ∈ X × X and Assumption 22& Polynomial

c(e) ∈ {0, 1}, ∀e ∈ X × X Polynomial

Table 4.1: Special cases of Problem 4 and their computational complexity.

are satisfied. Furthermore, we assume that Condition-2) in Theorem 2 holds in our

graph instance G(Ā, B̄); hence, we have |N (S)| ≥ |S|, ∀S ⊆ XT = {xi ∈ X : i ∈ T }

in G(Ā, B̄). Thus, in order to solve Problem 4 under these assumptions, it remains to

ensure Condition-1) in Theorem 2. In order words, to solve Problem 4 with the above

cost function and graph instance, we need to find the minimum number of undirected

edges need to be added such that all the state vertices indexed by the target set are

reachable. Next, we reduce the min-set-cover problem [154] to this instance of Problem 4.

Definition 7 (Min-set-cover Problem). Let X = {xi}ni=1 be a set of n elements. Let

Sj ⊆ X for all j ∈ [m]. A set cover of X is a set I ⊆ [m] such that
⋃
j∈I Sj ⊇ X .

Assume that
⋃m
j=1 Sj ⊇ X , find a set cover I such that |I| is minimized.

The similarity between Min-set-cover problem and the constructed instance of the Prob-

lem 4 lies in the fact that both problems are related with reachability of vertices in

graphs. Intuited by this idea, we have the following theorem:

Theorem 9. The minimum-cost edge selection to achieve structural target controllability

(Problem 4) is NP-hard.

Proof. See Appendix A.3.

Although Problem 4 is NP-hard in general, this does not imply that every instance, i.e.,

problems with specific cost functions and graph topologies, is NP-hard. In what follows,

we identify a few cases of Problem 4 and show how the complexities of obtaining an

optimal solution may differ (see Table 4.1 for a summary).

2Assumption 2 is defined in Section 4.2.2.
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4.2.2 Solution to the Sparsest State Matrix Design Problem

As the first variant of the Problem 4, we consider the design of a sparse state matrix that

renders a structurally target controllable system. In other words, given a structurally

target controllable pair (Ā, B̄), Problem 5 seeks the sparsest symmetrically structured

state matrix Ā? that preserves structural target controllability with respect to T . In

this case, we show that the problem under consideration is NP-hard:

Theorem 10. The Sparsest State Matrix Design Problem (Problem 5) is NP-hard.

Proof. See Appendix A.3.

As stated in the above theorem, Problem 5 is computationally challenging regardless

of the additional assumption. Thus, we consider relaxing the problem by imposing

additional assumptions on the topology of the state graph, motivated by a class of brain

network model [41], as follows:

Assumption 2. The structural pair (Ā, B̄), where Ā ∈ {0, ?}n×n is symmetrically struc-

tured, satisfies the following conditions:

[Ā]ii = 0, ∀i ∈ [n],

B̄ ∈ {0, ?}n×1, ||B̄||0 = 1,

(4.3)

Furthermore, T = [n].

Under the above assumption, (Ā, B̄) represents a single-input system with only one

actuated state. The assumption T = [n] is necessary because, otherwise, Problem 5

is still NP-hard, as shown in the proof of Theorem 9. Since T = [n], it follows that

structural target controllability is equivalent to structural controllability. As a result,

we aim to find the sparsest state matrix to render a structurally controllable single-input

system. Hereafter, we show that this problem is polynomially solvable. To show this,

we exploit the special structure of the system digraph. More specifically, we show in

Lemma 4 that structural controllability can be equivalently characterized by another set

of graph-theoretic conditions. Using these refined conditions, we will recast the problem
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Figure 4-1: Illustrations of Theorem 11. Consider symmetrically structured pairs
(Ā1, B̄) and (Ā2, B̄) whose mixed graph representations are depicted in (a) and (c),
respectively. In each subfigure, the black and red vertices are state and input vertices,
respectively. For the structural pair (Ā1, B̄), the second condition in Theorem 11 is
satisfied, and an optimal solution is depicted in (b). For the structural pair (Ā2, B̄), the
first condition in Theorem 11 is satisfied, and an optimal solution is shown in (d).

such that effective graph-theoretic algorithms can be applied.

Before stating Lemma 4, we introduce several relevant notions. Given a symmetrically

structured matrix Ā, a set of undirected edges M ⊆ Eu(Ā) is said to be an undirected

matching if no two edges in M has a common vertex and M is a maximum undirected

matching if M has the largest cardinality among all feasible undirected matchings.

Given an undirected matching M, a vertex is called unmatched if it is not incident to

any edge in M. Since there is only one state vertex actuated by an input in G(Ā, B̄),

without loss of generality, we assume that the state vertex x1 is the only input-actuated

vertex hereafter.

Lemma 4. Consider a structural pair (Ā, B̄) satisfying Assumption 2. The pair (Ā, B̄)

is structurally controllable, if and only if, the following two conditions hold simultane-

ously:

1. either GX or GX\{x1}, induced subgraphs of G(Ā), can be covered by vertex-disjoint

directed cycles of length of at least 2;

2. GX is strongly connected.

Proof. See Appendix A.3.

By Lemma 4, a feasible solution to Problem 4 must contain edges to ensure both con-

ditions in Lemma 4 simultaneously. In the following theorem, we characterize these

feasible solutions and identify a condition for optimality.
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Figure 4-2: Non-optimality of applying the algorithm in [58] to Problem 5. Consider a
structural pair (Ā, B̄) and associate it with a digraph G(Ā, B̄) = (X ∪ U , E(Ā) ∪ EU ,X ),
depicted in subfigure (a). In order to obtain a set of a minimum total number of directed
edges in G(Ā) to ensure structural controllability, we execute the algorithm in [58]. At
the first step, the algorithm selects a set of edges to form a minimum spanning tree,
depicted by the blue edges in (b); at the second step, it returns the directed edges to be
added such that the Condition-2) in Theorem 1 is satisfied, depicted by the red edges in
(c). We denote by the set E the solution returned by the algorithm in [58], and depict the
mixed graph G = (X ∪ U , {{xi, xj} : (xi, xj) or (xj , xi) ∈ E}, EU ,X ) in (d). Comparing
with Figure 4-1, we see that G is not an optimal solution to Problem 5.

Theorem 11. Consider a structural pair (Ā, B̄) satisfying Assumption 2. Let

Āa =

 Ā B̄

B̄> 0

 ,
and define G(Āa) = (X ∪ {u1}, Eu(Ā) ∪ {{u1, x1}}). Let M1 and M2 be maximum

undirected matchings in G(Ā) and G(Āa), respectively. Consider a set Eu1 (resp., Eu2)

such that G(X , {(xi, xj) : {xi, xj} ∈ Eu1}) (resp., G(X \{x1}, {(xi, xj) : {xi, xj} ∈ Eu2}))

can be covered by vertex-disjoint directed cycles and is strongly connected. Then,

1. if |M1| = |M2|, then |Eu1 | = 2|X | − 2|M1| − 1 and Eu1 is an optimal solution to

Problem 5;

2. if |M1| 6= |M2|, then |Eu2 | = 2|X | − 2|M1| − 2 and Eu2 is an optimal solution to

Problem 5.

Proof. See Appendix A.3.

Based on Theorem 11, a naive solution to Problem 4 is to first find a set of undirected

edges to ensure Condition-1) in Lemma 4 (each state vertex being covered by vertex-

disjoint directed cycles) and then condense each derived vertex-disjoint cycles into a
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Algorithm 4: Solution to Problem 5 under Assumption 2

Input: The system digraph G(Ā, B̄) = (X ∪ U , E(Ā) ∪ EU ,X ) of a structural pair
(Ā, B̄), where Ā is symmetrically structured, and the undirected state graph
G(Ā) = (X , Eu(Ā));

Output: Optimal solution to Problem 4, Eu(Ā∗);
Step 1: Find undirected edges to ensure Lemma 4-1)

1: Define Āa and undirected graph G(Āa) as in Theorem 11;
2: Find maximum undirected matchings in G(Ā) and G(Āa), respectively. Denote

them by M1 and M2, respectively;
3: if |M1| = |M2| then
4: Eu ←M1, V ← X , E ← E(Ā);
5: else
6: Eu ←M2, V ← X \ {x1}, E ← E(Ā) \ {(xj , x1), (x1, xj) : [Ā]1j = ?};
7: end if
8: Define a cost function c′(e) : X × X → {0, 1,∞}, as follows:

c′(e) =


0, if e ∈ {(xi, xj) ∈ E : {xi, xj} ∈ Eu},
1, if e ∈ E \ {(xi, xj) ∈ E : {xi, xj} ∈ Eu},
∞, otherwise.

9: Find a minimum weighted perfect matching Mb in the bipartite graph
B(V,V, E) with weight c′(e);

10: Let E ′u ← {{xi, xj} ∈ Eu(Ā) : (xi, xj) ∈Mb};
Step 2: Find undirected edges to ensure Lemma 4-2)

11: Let {Ci}ki=1 be the set of cycles in digraph G(V,Mb);
12: if |M1| = |M2| then
13: Let Ṽ ← {vi}ki=1;

Let Ẽu ← {{vi, vj} : {(xi′ , xj′) ∈ E(Ā) : xi′ ∈ VCi , xj′ ∈ VCj} 6= ∅};
14: else
15: Ṽ ← {vi}k+1

i=1 , Ẽu ← {{vi, vj} : {(xi′ , xj′) ∈ E(Ā) : xi′ ∈ VCi , xj′ ∈ VCj} 6=
∅} ∪ {{vj , vk+1} : {xj′ ∈ VCj : [Ā]1j′ = ?} 6= ∅};

16: end if
17: Find a minimum spanning tree Mt in G(Ṽ, Ẽu);
18: Let [Ā∗]ij = ?, if {xi, xj} ∈ E ′u ∪Mt, [Ā∗]ij = 0 otherwise;
19: Return Eu(Ā∗).
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condensed node and recast paths among vertices in different vertex-disjoint cycles as

edges among the corresponding condensed nodes. The problem of adding more undi-

rected edges to ensure Condition-2) in Lemma 4 is, therefore, equivalent to finding a

minimum spanning tree in the condensed graph, as illustrated by Algorithm 4. Indeed,

using Theorem 11, we prove in the following theorem that such an iterative approach is

optimal.

Theorem 12. Under Assumption 2, Algorithm 4 returns an optimal solution to Prob-

lem 5 in O(|X |3).

Proof. See Appendix A.3.

Remark that this polynomial-time solution heavily relies on the fact that the system is

symmetrically structured. Without this constraint, the problem is NP-hard, as shown

in [58]. In addition, notice that the authors in [58] propose a 2-approximation algorithm

to the problem of selecting a minimum total number of directed edges ensuring structural

controllability. However, the algorithm cannot be applied to solve Problem 5 in our case,

as we illustrate in Figure 2.

4.2.3 Solution to the Minimum Undirected Edge Addition Problem

We now proceed to address the Minimum-cost Edge Addition Problem, i.e., Problem 6.

Since the necessary and sufficient conditions for structural target controllability share a

similar form with the ones of structural controllability, we adopt a similar approach to

the one proposed in Chapter 3 to solve this problem. More specifically, on the one hand,

suppose that the topology of the system digraph ensures that Condition-1) in Theorem 2

holds, then it remains to add edges to ensure all target vertices are matched in the view

of Remark 2. On the other hand, suppose that Condition-2) in Theorem 2 holds, then

it suffices to add undirected edges to ensure that all target vertices are reachable (from

the inputs). This is equivalent to ensuring all connected components containing target

vertices that are reachable from inputs. As a result, in order to add a minimum number

of undirected edges, it is beneficial to add undirected edges to connected components
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that contain right-unmatched target vertices. To formalize this argument, we define the

following notion:

Definition 8 (Target-SCC). Let G(Ā, B̄) be the system digraph of a structural pair,

and T be the target set. An SCC in G(Ā, B̄) is called a T-SCC if its vertex set contains

at least one target vertex from XT = {xi ∈ X : i ∈ T }. We say a T-SCC is reachable if

there exists a path from an input vertex ui ∈ U to a vertex in the T-SCC, and unreachable

otherwise.

However, since we are adding undirected edges, we cannot simply apply Algorithm 8.

In our case, adding an undirected edge {xi, xj} can be viewed as adding a pair of

directed edges (xi, xj) and (xj , xi) if xi 6= xj ; or a self-loop (xi, xi), otherwise. Thus,

it is possible that adding one undirected edge results in two right-unmatched vertices

to become right-matched. This poses new challenges on Problem 6, since the addition

of undirected edges requires a more careful analysis than Problem 3 (see Figures 4-3

and 4-4 for examples).

Since it is beneficial to add undirected edges to ensure reachability of unreachable T-

SCC and reduce the number of right-unmatched target vertices, we characterize in the

following lemma how many unmatched vertices can be reduced through the added edge.

Lemma 5. Consider a structural pair (Ā, B̄), where Ā is symmetrically structured.

Define B1 = (X ∪ U ,X , EX∪U ,X ), where EX∪U ,X = E(Ā) ∪ EU ,X . Let M be a maxi-

mum matching in B1. Given an undirected edge {xi, xj}, let B2 = (X ∪ U ,X , EX∪U ,X ∪

{(xi, xj), (xj , xi)}). Let r1 and r2 be the number of right-unmatched vertices in B1 and

B2, respectively. Then,

1. r2 ≥ r1 − 2 for any {xi, xj};

2. if both xi and xj are right-unmatched with respect to M in B1, then there exists a

matching M′ in B2 such that |M′| = |M|+ 2 with xi and xj being right-matched.

Proof. See Appendix A.3.

Item-1) in Lemma 5 shows that adding an undirected edge can reduce at most two right-

62



𝑥1 𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑢1

(𝑎)

𝑥1 𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑢1

(𝑏)

𝑥1 𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑢1

(𝑐)

𝑥1 𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑢1

(𝑑)

𝑥1 𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑢1

(𝑒)

𝑥7

𝑥1 𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑢1

(𝑓)

𝑥7

Figure 4-3: Illustrations on the Class-0, 1 and 2 of unreachable T-SCC. In each subfigure,
the red and black vertices are input and state vertices, respectively. In (a), let T =
{i}6i=1. G{x5,x6} is a Class-0 T-SCC because the maximum number of right-unmatched
target vertices that can be reduced by adding an edge making G{x5,x6} reachable is 0
(as shown by the red edge in (b)). In (c), let T = {i}6i=1. G{x5,x6} is a Class-1 T-SCC
because the maximum number of right-unmatched target vertices that can be reduced
by adding an edge, making G{x5,x6} reachable, is 1 (as shown by the red edge in (d)).
In (e), let T = {i}7i=1. G{x5,x6,x7} is a Class-2 T-SCC because we can reduce the total
number of right-unmatched target vertices by 2 after adding an edge, making G{x5,x6,x7}
reachable (as shown by the red edge in (f)).

unmatched vertices in the overall system mixed graph. Meanwhile, it is also possible

that a T-SCC cannot reduce any right-unmatched vertex in spite of any added edge,

as depicted in Figure 4-3. Thus, we need to characterize how many right-unmatched

vertices can be reduced by adding an undirected edge to a T-SCC:

Definition 9 (Class-η Unreachable T-SCC). Let GS = (S, (S × S) ∩ E(Ā)) be an un-

reachable T-SCC in the system digraph G(Ā, B̄). Let XT be the set of target vertices

in S. Construct two bipartite graphs: (i) B(S,XT , ES,XT ), and (ii) B′(S ∪ {x0},XT ∪

{x0}, ES,XT ∪ {(x0, xj), (xj , x0) : xj ∈ S}), where x0 is an auxiliary vertex. Let r and r′

be the right-unmatched vertices with respect to a maximum matching in B and B′. Then

an unreachable T-SCC is in Class-η if r − r′ = η.

Remark 9. By Definition 9, an unreachable T-SCC is in Class-2 if it has at least one

right-unmatched target vertex. If an unreachable T-SCC has no right-unmatched target

vertex, then it is in either Class-0 or Class-1.

According to Lemma 5, an unreachable T-SCC can only be in Class-2, 1 or 0. Meanwhile,
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(𝑎) (𝑏)

Figure 4-4: Illustrations of Theorem 13. In each subfigure, the red and black vertices
are input and state vertices, respectively. We consider a structural pair (Ā, B̄), where
Ā ∈ {0, ?}5×5 is symmetrically structured, and depict its mixed graph representation in
subfigure (a). Let the target set be T = {1, 2, · · · , 5}. There are q2 = 1 unreachable
Class-2 T-SCCs, and there are 2 right-unmatched target vertices with respect to a max-
imum matching in the corresponding bipartite graph of G(Ā, B̄). However, there is no
reachable right-unmatched target vertex, which implies t = 1 in the lower bound (4.4) of

Theorem 13. Therefore, we need to add at least ceil(1+max(
2− 0− (2× 1− 1)

2
, 0)) = 2

edges to ensure structural target controllability. In subfigure (b), the blue undirected
edges are the newly added edges which ensure structural target controllability, consti-
tuting an optimal solution to Problem 6.

we can design an algorithm to determine which class a T-SCC is in, using Definition 9,

as follows. First, we create an auxiliary vertex and connect it with every target vertices

within this T-SCC using undirected edges. Then, we construct the bipartite graph

associated with the T-SCC, as well as that of the T-SCC together with the auxiliary

vertex and edges. Finally, we compute the maximum matching in these two bipartite

graphs and compare their number of right-unmatched vertices. By doing so, we can

not only find out how many right-unmatched vertices can be reduced through an added

edge, but we can also obtain a set of vertices in the T-SCC that enables the reduction,

i.e., the vertices matching with the artificial vertex in the bipartite matching. We refer

to this set as the feature set. The above discussion is formalized in Algorithm 5.

Although the right-unmatched vertices may be different with respect to different maxi-

mum matchings in a same bipartite graph, the number of them is invariant among differ-

ent maximum matchings. As a result, it suffices to only consider a set of right-unmatched

vertices with respect to a particular maximum matching when running Algorithm 5.

After defining the T-SCCs, we shift our focus to characterize the feasible solutions to

the problem. Clearly, the total number of undirected edges needed to ensure structural
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Algorithm 5: Classification of the i -th unreachable T-SCC into Class-0, 1 or
2.

Input: The ith unreachable T-SCC G(Xi, Ei), target vertex set XT i ⊆ Xi;
Output: The classifier ηi and a feature set X ′i ;

1: Find a Maximum Bipartite Matching Mb in B(Xi,XT i, Ei). Let X ′′i be the set
of right-unmatched target vertices;

2: if |X ′′i | 6= ∅ then
3: ηi ← 2,X ′i ← X ′′i ;
4: else
5: Add a slack target vertex x0;
6: X̃i ← Xi ∪ {x0},XT i ← XT i ∪ {x0};
7: Find a Maximum Bipartite Matching M̃b in
B(X̃i,XT i, Ei ∪ {(x0, xj), (xj , x0) : xj ∈ Xi}).

Let X̃ ′′i be the set of right-unmatched vertices in XT i;
8: if |X̃ ′′i | = ∅ then
9: ηi ← 1,X ′i ← {xj : (xj , x0) or (x0, xj) ∈ M̃b};

10: else
11: ηi ← 0,X ′i ← Xi;
12: end if
13: end if
14: Return ηi and X ′i .

target controllability must be larger or equal to the total number of unreachable T-SCCs.

Similarly, it is also no less than the number of undirected edges needed to make all the

right-unmatched target vertices matched. As it is beneficial to add edges that serve

both purposes, the optimal solution should leverage this fact and add edges between

different T-SCCs. Using this idea, we compute a lower bound on the number of edges

in any feasible solution.

Theorem 13. Consider a structural pair (Ā, B̄), where Ā is symmetrically structured,

and a target set T . Let the cost function c(e) be defined as in (4.2). Let Eu(Â) be a

feasible solution to Problem 6, then

∑
e∈Eu(Â)

c(e) ≥ ceil(`+ max(
r − q1 − (2q2 − t)

2
, 0)), (4.4)

where ` and r are the total number of unreachable T-SCCs, and the number of right-

unmatched target vertices, respectively. q1 and q2 are the total number of unreachable

Class-1 T-SCCs, and unreachable Class-2 T-SCCs, respectively. In particular, t = 1

if there is no reachable right-unmatched target vertex and there exists an unreachable

Class-2 T-SCC, and t = 0 otherwise. The function ceil : R→ N, is defined as ceil(q) =
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min{p ∈ N : p ≥ q}.

Proof. See Appendix A.3.

This theorem characterizes the theoretical minimum number of edges in any feasible

solutions. In particular, we notice that the number is larger than both ` and r/2, which

is consistent with our previous analysis. Meanwhile, the minus terms are involved due

to consideration of edges that satisfy both conditions in Theorem 2. With the help of

this theorem, it remains to construct a feasible solution whose cardinality equals the

theoretical lower bound. To do this, we notice that different classes of T-SCC have dif-

ferent power in reducing the overall number of right-unmatched vertices through adding

an undirected edge. Subsequently, a reasonable approach is to add edges ‘greedily’ to

ensure reachability of Class-2 T-SCCs, followed by Class-1, and Class-0 T-SCCs. Based

on this intuition, we propose Algorithm 6 to obtain a solution to Problem 6.

Essentially, Algorithm 6 follows four steps: (i) We first iterate over each Class-2 T-SCC

following the order of decreasing total number of right-unmatched target vertices in

it. For each Class-2 T-SCC, we add an undirected edge between a target vertex in it

and a vertex outside such that the total number of unreachable T-SCCs is reduced by

one and the total number of right-unmatched target vertices is reduced maximally. (ii)

For each Class-1 T-SCC, we add an undirected edge between a vertex in it and a vertex

outside such that the total number of unreachable T-SCC is reduced by one and the total

number of right-unmatched target vertices is reduced maximally. (iii) For each Class-0

T-SCC, we add an undirected edge between a vertex in it and a reachable vertex such

that this T-SCC becomes reachable. (iv) As such, we have made all the unreachable

T-SCCs reachable. In this step, we add undirected edges such that all the remained

right-unmatched target vertices are made right-matched. We state the complexity of

Algorithm 6 in the following Theorem.

Theorem 14. Algorithm 6 gives an optimal solution to Problem 6 in O(|X |3).

Proof. See Appendix A.3.
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Algorithm 6: Solution to Problem 6

Input: The digraph G(Ā, B̄), a set of target vertices XT , and undirected edge cost
function c(e) : X × X → {0, 1};

Output: Optimal solution Eu(Ā?);
Initialization:

1: ET ← ((U ∪ X )×XT ) ∩ (E(Ā) ∪ EU ,X ), Eu ← ∅, Ěu ← ∅;
2: Let {Xi}q2i=1, {Xi}

q2+q1
i=q2+1, and {Xi}q2+q1+q0

i=q2+q1+1 be the set of vertices in Class-2, 1,

and 0 unreachable T-SCCs in G(Ā, B̄), respectively. Let ` = q2 + q1 + q0. Let
M be a matching in B(X ∪ U ,XT , ET ). Let S (respectively, S̃) be the set of
reachable target vertices which are right-unmatched (respectively, matched)
with respect to M. Denote by X ′′i the set of right-unmatched target vertices
in Xi,∀i ∈ [q2]. Rearrange the index of vertex sets in {Xi}q2i=1 such that
|X ′′i | ≥ |X ′′i+1|,∀i ∈ [(q2 − 1)]. Let X ′i be the feature set of Xi,∀i ∈ [`];
Step 1: Iterate over Class-2 T-SCC

3: for each Xj ∈ {Xi}q2i=1 do
4: if S 6= ∅ then
5: Let e = {xj′ , xk}, where xj′ ∈ X ′′j and xk ∈ S;
6: Eu ← Eu ∪ {e},S ← (X ′′j \ {xj′}) ∪ (S \ {xk});
7: S̃ ← (S̃ ∪ Xj) \ S;
8: else if X ′′j 6= ∅ then
9: if j < q2 then

10: Let e = {xj′ , xk}, where xj′ ∈ X ′′j and xk ∈ X ′′j+1;
11: Eu ← Eu ∪ {e};
12: X ′′j+1 ← (X ′′j \ {xj′}) ∪ (X ′′j+1 \ {xk});
13: Xj+1 ← Xj+1 ∪ Xj ;
14: else
15: Find a maximum matching M̃ in
B(U ∪ X , S̃, EU ,X ∪ {(xi, xj) : {xi, xj} ∈ Eu(Ā) ∪ Eu, xj ∈ S̃});

16: if Ŝ = {xi ∈ S̃ : (ui′ , xi) ∈ M̃, ui′ ∈ U} 6= ∅ then
17: Let e = {xj′ , xi}, where xj′ ∈ X ′′q2 and xi ∈ Ŝ;
18: else
19: Let e = {xj′ , xi′}, where xj′ ∈ X ′′q2 and xi′ ∈ {xi′ : (xi, xi′) ∈M};
20: end if
21: Eu ← Eu ∪ {e}, S ← X ′′q2 \ {xj′};
22: S̃ ← (S̃ ∪ Xq2) \ S;
23: end if
24: else
25: Let e = {xj′ , xk}, where xj′ ∈ Xj and xk ∈ S̃;
26: Eu ← Eu ∪ {e}, S̃ ← S̃ ∪ Xj ;
27: end if
28: end for
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Step 2: Iterate over Class-1 T-SCC
29: for each Xj ∈ {Xi}q2+q1

i=q2+1 do
30: if S 6= ∅ then
31: Let e = {xj′ , xk}, where xj′ ∈ X ′j and xk ∈ S;
32: Eu ← Eu ∪ {e},S ← S \ {xk};
33: S̃ ← (S̃ ∪ Xi) \ S;
34: else
35: Let e = {xj′ , xk}, where xj′ ∈ Xj and xk ∈ S̃;
36: Eu ← Eu ∪ {e}, S̃ ← S̃ ∪ Xj ;
37: end if
38: end for

Step 3: Iterate over Class-0 T-SCC
39: for each Xj ∈ {Xi}q2+q1+q0

i=q2+q1+1 do

40: Let e = {xj′ , xk}, where xj′ ∈ Xj and xk ∈ S̃;
41: Eu ← Eu ∪ {e}, S̃ ← S̃ ∪ Xj ;
42: end for

Step 4: Matching remaining right-unmatched target vertices
43: if S 6= ∅ then
44: if |S| = 2k, for some k ∈ Z then
45: Partition S into subsets R = {x`i}ki=1 and Q = {xγi}ki=1 s.t. Q∪R = S.

Let Eu ← Eu ∪ {x`i , xγi}ki=1;
46: else
47: k ← {k ∈ Z : |S| = 2k + 1};
48: Pick a xp ∈ S, and then partition S \ {xp} into subsets R = {x`i}ki=1 and
Q = {xγi}ki=1 such that R∪Q =S \ {xp}. Then,
Eu ← Eu ∪ {{x`i , xγi}}ki=1 ∪ {{xp, xp}};

49: end if
50: end if
51: Let [Ā?]ij = ? if {xi, xj} ∈ Eu(Ā) ∪ Eu and [Ā?]ij = 0 otherwise;
52: Return Eu(Ā?).
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Figure 4-5: In each subfigure, the red vertex is the input vertex and black vertices are
state vertices. The subfigure (a) is the mixed graph representation G(Ā, B̄) of (Ā, B̄);
The subfigure (b) is the mixed graph representation G(Ā∗1, B̄) of (Ā∗1, B̄), where the red
edges is the ’newly added’ edges compared with (a); The subfigure (c) is the mixed
graph representation G(Ā∗2, B̄) of (Ā∗2, B̄).

4.3 Illustrative Examples

In this section, we consider a few examples to illustrate how to use Algorithms 4 and 6

to solve Problem 5 and 6, respectively. To illustrate these algorithms, we consider

a structural pair (Ā, B̄), where Ā ∈ {0, ?}8×8 is symmetrically structured and B̄ ∈

{0, ?}8×1. The mixed graph representation G(Ā, B̄) is depicted Figure 4-5-(a). Let

X = {xi}8i=1 and U = {u1} be the sets of state and input vertices, respectively. Let the

target set be T = {1, 2, · · · , 8}. Since there exists a set S = {x2, x3, x4, x5} such that

N (S) = {x1}, by Theorem 1, (Ā, B̄) is not structurally controllable.

We first consider the minimum cost edge addition problem (Problem 6), i.e., adding

undirected edges to achieve structural target controllability with minimum total cost.

We define the cost function c1(e),∀e ∈ X × X , as follows.

c1(e) =

0, for e ∈ Eu(Ā),

1, otherwise.

We use Algorithm 6 to solve this problem. Notice that in Figure 4-5-(a), DX1 , where

X1 = {x6, x7, x8}, is a Class-1 unreachable T-SCC. With respect to a maximum match-

ing M in B(X ∪ U ,X , E(Ā) ∪ EU ,X ), we have x3, x4, and x5 are right-unmatched target

vertices. By Algorithm 6, we first add an edge e1 = {x5, x6} into the system mixed graph

such that, in G(X ∪ U , Eu(Ā) ∪ {e1}, EU ,X ), ∀xi ∈ X1 is input-reachable and total num-

ber of right-unmatched target vertices is reduced by 1 in the induced bipartite graph.

Then we add e2 = {x2, x3} into the system mixed graph such that all the reachable

right-unmatched vertices are matched and the total number of right-unmatched target
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vertices will be reduced by 2 in the induced bipartite graph. Let Ā∗1 be the symmetri-

cally structured matrix returned by Algorithm 6. Through the proof of Theorem 14, we

have Eu(Ā∗1) is the optimal solution of Problem 6.

Consequently, after applying Algorithm 6, the resulting structural system (Ā∗1, B̄) is

structurally controllable. Next, we consider the sparsest state matrix design problem

(Problem 5) for (Ā∗1, B̄). Let the new cost function be

c2(e) =

1, for e ∈ Eu(Ā∗1),

∞, otherwise.

We observe that (Ā∗1, B̄) and target set T satisfy Assumption 2; hence, we can use

Algorithm 4 to solve this problem. We can check that Condition-1) in Theorem 11

is satisfied. Let Ā∗2 be the symmetrically structured matrix returned by Algorithm 4.

Through the proof of Theorem 11, we have Eu(Ā∗2) is the optimal solution to Problem 5.
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Chapter 5

Structural Stabilizability and

Network Resilience

While controllability is concerned about the ability of a system to steer all its states

arbitrarily, in certain applications, it is not of major concern. Instead, stabilizability is

a less restrictive system property since it only requires that the system states can be

steered to the origin asymptotically by injecting proper control signals. Nonetheless,

assessing whether a system is stabilizable requires exact parameters of the system.

In this chapter, we consider characterizing the stabilizability of a system from a topolog-

ical perspective. Firstly, we derive a graph-theoretic necessary and sufficient condition

for structural stabilizability of undirected networks. Secondly, we propose computa-

tionally efficient methods to determine the generic dimension of controllable subspace

and the maximum stabilizable subspace of an undirected network system. Thirdly, we

formulate the optimal actuator-disabling attack problem, where the attacker disables

a limited number of actuators such that the maximum stabilizable subspace is min-

imized. Fourthly, we aim to solve the optimal recovery problem, where a defender

activates a limited number of new actuators such that the dimension of the stabilizable

subspace is maximized. We show the NP-hardness of this NP-hard, and we propose a

(1−1/e) approximation algorithm. Finally, we provide graph-theoretic characterizations
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for structural stabilizability in (arbitrary) linear structural systems.

5.1 Problem Formulations

We consider networks whose interconnection between states are captured by a symmetric

linear time-invariant (LTI) system, described by

ẋ = Ax+Bu, (5.1)

where x ∈ Rn and u ∈ Rm are state vector and input vector, respectively. We refer

to matrices A = A> ∈ Rn×n and B ∈ Rn×m as the state matrix and input matrix,

respectively. Hereafter, we use the pair (A,B) to represent the system (5.1).

In order to infer the properties of a system modeled by (5.1) from its structure, and to

ease presentation of this chapter, we recall and reintroduce some necessary concepts on

structured matrices – also see Subsection 2.1.1 in Chapter 2.

Definition 10 (Structured and Symmetrically Structured Matrices). A matrix M̄ ∈

{0, ?}n×m is called a structured matrix, if [M̄ ]ij, the (i, j)-th entry of M̄ , is either

a fixed zero or an independent free parameter, denoted by ?. In particular, a matrix

M̄ ∈ {0, ?}n×n is symmetrically structured, if the value of the free parameter associated

with [M̄ ]ji is constrained to be the same as the value of the free parameter associated

with [M̄ ]ij, for all i and j.

Similar to the definition of structural controllability (Definition 1), we define structural

stabilizability as follows:

Definition 11 (Structural Stabilizability). A structural pair (Ā, B̄) is said to be struc-

turally stabilizable if there exists a stabilizable numerical realization (Ã, B̃).

Remark 10. Stabilizability is not a generic property [34], yet the structural stabiliz-

ability of (Ā, B̄) implies the existence of a numerical realization (Ã, B̃) such that (Ã, B̃)

is stabilizable. In other words, it is a necessary condition for the stabilizability of any

realization (Ã, B̃) of a structural pair (Ā, B̄).
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In the next two subsections, we will be focusing on two different main threads: (i)

analysis, and (ii) design. We first formulate the problem of characterizing structural

stabilizability using only the structural pattern of a pair, as stated below:

Problem 7. Given a continuous-time linear time-invariant pair (A,B), we denote by

(Ā, B̄) the structural pattern of (A,B), where Ā ∈ {0, ?}n×n is symmetrically structured.

Find a necessary and sufficient condition such that (Ā, B̄) is structurally stabilizable.

In addition to the above problem, we also consider how “unstabilizable” a system is,

when a system is not stabilizable. To characterize the “unstabilizability”, we propose

using the dimension of the stabilizable subspace of a system, which can be stated as

follows:

Definition 12 (Stabilizable Subspace [161]). Given a pair (A,B), where A ∈ Rn×n and

B ∈ Rn×m, a set S ⊆ Rn is said to be the stabilizable subspace of (A,B) if for ∀x(0) ∈ S,

there exists a control input u(t) ∈ Rm, for t ≥ 0, such that

lim
t→∞

x(t) = 0.

As a special case, if a pair (A,B) is stabilizable, then S = Rn. Moreover, we aim to deter-

mine the maximum dimension of stabilizable subspace, denoted by m-dim(Ā, B̄), among

all numerical realizations of (Ā, B̄). Formally, we can state this problem as follows.

Problem 8. Given a structural pair (Ā, B̄), where Ā is symmetrically structured, find

m-dim(Ā, B̄).

Upon these problems that concern mainly with the analysis of structural stabilizability,

we can now focus on the design aspect of these problems in the following paragraphs.

Since stabilizability plays a key role on network security – see, for example [64], in

this thesis, we also consider network resilient problems. In this context, we assume that

there exists an attacker who aims to minimize the maximum dimension of the stabilizable

subspace by removing a certain amount of actuation capabilities, i.e., inputs. Formally,

we consider the following version of the problem:

Problem 9 (Optimal Actuator-disabling Attack Problem). Consider a structural pair

(Ā, B̄), where Ā ∈ {0, ?}n×n is symmetrically structured, and B̄ ∈ {0, ?}n×m is a struc-
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tured matrix. Let the set Ω be Ω = [m], where [m] := {1, 2, · · · ,m}. Given a budget

k ∈ N, find

J ∗ = arg min
J⊆Ω

m–dim(Ā, B̄(Ω \ J ))

s.t. |J | ≤ k,
(5.2)

where B̄(I) ∈ {0, ?}n×|I| is a matrix formed by the columns of B̄ indexed by I, for some

I ⊆ Ω.

In other words, the Problem 9 concerns about finding an optimal strategy to attack the

stabilizability of a network using a fixed budget. Meanwhile, it is also of interest to

consider the perspective of a system’s designer (or, defender) that is concerned with the

resilience of the network, i.e., how to maximize the dimension of stabilizable subspace

by adding actuation capabilities (i.e., inputs) to the system:

Problem 10 (Optimal Recovery Problem). Consider a structural pair (Ā, B̄), where

Ā ∈ {0, ?}n×n is symmetrically structured and B̄ ∈ {0, ?}n×m is structured. Let Ucan,

where |Ucan| = m′, be the set of candidate inputs that can be added to the system, and let

B̄Ucan ∈ {0, ?}n×m
′

be the structured matrix characterizing the interconnection between

new inputs and the states in the system. Given a budget k ∈ N, find

J ∗ = arg max
J⊆[m′]

m-dim(Ā, [B̄, B̄Ucan
(J )])

s.t. |J | ≤ k,
(5.3)

where B̄Ucan(J ) ∈ {0, ?}n×|J | is a structured matrix formed by the columns in B̄Ucan

indexed by J , and [B̄, B̄Ucan(J )] is the concatenation of B̄ and B̄Ucan(J ).

By the duality between stabilizability and detectability [162], all the results obtained

on stabilizability in this chapter can be readily used to characterize detectability. All

relevant notions and preliminaries needed to present solutions to Problems 7–10 have

been introduced in Subsection 2.1.1, Subsection 2.1.2, and Subsection 2.2, respectively.

5.2 Analysis of Structural Stabilizability

In what follows, we have two subsections where we address Problems 7 and 8, respec-

tively. In Section 5.2.1, we obtain a theorem (i.e., Theorem 15) that characterizes the
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solutions to Problem 7, whereas in Section 5.2.2, Theorem 16 gives a characterization

of the maximum dimension of stabilizable subspace, which can be leveraged to provide

solutions to Problem 8.

5.2.1 Graph-theoretic Conditions on Structural Stabilizability

Since stabilizability is a property that concerns about the stability of the uncontrollable

part of (A,B), in order to obtain a graph-theoretic condition, we first characterize the

controllable and uncontrollable parts from the structural information contained in the

pair (Ā, B̄).

As characterized by Lemma 3 in Chapter 2, if a (symmetric) structural pair (Ā, B̄) is

irreducible, then every non-zero mode of a numerical realization (Ã, B̃) is controllable.

Furthermore, the above claim holds for almost all numerical realizations. In other

words, the irreducibility of (Ā, B̄) guarantees that all the non-zero modes of (Ã, B̃) are

controllable generically. Subsequently, we can claim that, from a contrapositive point of

view, given an irreducible pair (Ā, B̄), if for any numerical realization (Ã, B̃) there exists

an uncontrollable eigenvalue, then that uncontrollable eigenvalue is 0. This implies that

(Ã, B̃) is not stabilizable. Therefore, if a pair (Ā, B̄) is irreducible but not structurally

controllable, then (Ā, B̄) is not structurally stabilizable. Hence, we have the following

lemma.

Lemma 6. Given an irreducible structural pair (Ā, B̄), where Ā ∈ {0, ?}n×n is sym-

metrically structured, then (Ā, B̄) is structurally stabilizable if and only if (Ā, B̄) is

structurally controllable.

Proof. See Appendix A.4.

While Lemma 6 provides us a condition for structural stabilizability when (Ā, B̄) is

irreducible, we should also consider the case when (Ā, B̄) is reducible. By the definition

of reducibility, (Ā, B̄) can be permuted to the form of (2.3). In order for (Ā, B̄) to

be structurally stabilizable, it is required that there exists a numerical realization Ã22
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whose eigenvalues of are all negative. Summarizing these two arguments, it is equivalent

to say that whether there exists a negative definite numerical realization Ã22 determines

whether the structural pair is stabilizable. Consequently, it is important to determine

when the above claim is true, as follows.

Lemma 7. Given a reducible structural pair (Ā, B̄), where Ā ∈ {0, ?}n×n is in the form

of (2.3). Then there exists a numerical realization Ã22 which is negative definite if and

only if the diagonal entries of Ā22 are all ?-entries.

Proof. See Appendix A.4.

Combining Lemmas 6 and 7, we have an algebraic condition for structurally stabiliz-

ability. In what follows, we present graph-theoretic interpretation of these conditions.

Theorem 15. Consider a structural pair (Ā, B̄), where Ā is symmetrically structured.

Let G(Ā, B̄) = (X ∪ U , EX ,X ∪ EU ,X ) be the digraph associated with (Ā, B̄), and Xr ⊆

X and Xu ⊆ X be the subset of state vertices which are input-reachable and input-

unreachable, respectively. The (Ā, B̄) is structurally stabilizable if and only if the fol-

lowing two conditions hold simultaneously in G(Ā, B̄):

1. the vertex xi has a self-loop, ∀xi ∈ Xu;

2. |N (S)| ≥ |S|, ∀S ⊆ Xr.

Proof. See Appendix A.4.

Essentially, to ensure structural stabilizability, two conditions should hold simultane-

ously: (i) every unreachable state vertex should have a self-loop, and (ii) the reachable

part of the system should be structurally controllable – see Theorem 2 for detailed de-

scription on graph-conditions for symmetric structural controllability. Next, we utilize

Theorem 15 to characterize the maximum dimension of the stabilizable subspace.
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5.2.2 Maximum Dimension of Stabilizable Subspace

Similar to the previous subsection, we will first consider the case when (Ā, B̄) is irre-

ducible, then extend the solution approach to the general case.

By Lemma 6, when (Ā, B̄) is irreducible, the (Ā, B̄) is structurally controllable if and

only if it is structurally stabilizable. This motivates us to consider the relationship be-

tween controllable subspace and stabilizable subspace. Moreover, it is shown in [36] that

the maximum dimension of controllable subspace is equal to the generic dimension of

controllable subspace of a structural pair without symmetric parameter constraints. We

may suspect that equality also holds when symmetric parameter dependency is consid-

ered. Motivated by this intuition, we first study the generic dimension of the controllable

subspace, and then extend the derived results to obtain a solution of Problem 8.

Given a structured pair (Ā, B̄), where Ā is symmetrically structured, if there exists a

proper variety V ⊂ RnĀ+nB̄ , such that rank(Q(Ã, B̃)) = k when [pÃ,pB̃] ∈ V c, then

we say the generic dimension [36] of controllable subspace of (Ā, B̄), denoted as dc, is

k. For almost all numerical realizations (Ã, B̃) with [pÃ,pB̃] ∈ RnĀ+nB̄ (except for a

proper variety, e.g., [pÃ,pB̃] ∈ V ), the dimension of controllable subspace is dc.

We characterize the generic dimension of controllable subspace of a structural pair in-

volving a symmetrically structured matrix by the following lemma.

Lemma 8. Given an irreducible structural pair (Ā, B̄), where Ā ∈ {0, ?}n×n is symmet-

rically structured and B̄ ∈ {0, ?}n×m is structured, the generic dimension of controllable

subspace equals to the term rank of [Ā, B̄], i.e., the concatenation of matrices Ā and B̄.

Proof. See Appendix A.4.

When (Ā, B̄) is reducible, we can permute (Ā, B̄) to obtain the form in (2.3). By

Definition 12 and Theorem 15, the maximum dimension of the stabilizable subspace

should be the sum of the generic dimension of controllable subspace and the maximum

number of negative eigenvalues over all the numerical realizations of the uncontrollable

part. This can be formalized in the following result.
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Theorem 16. Consider a structural pair (Ā, B̄), where Ā ∈ {0, ?}n×n is symmetrically

structured. Then,

1. if (Ā, B̄) is irreducible, then the maximum dimension of stabilizable subspace of

(Ā, B̄) equals to the generic dimension of controllable subspace of (Ā, B̄);

2. if (Ā, B̄) is reducible, then we permute the matrix Ā into the form (2.3). The

m-dim(Ā, B̄) is larger or equal to t–rank([Ā11, B̄1])+k, where k is the total number

of ?-entries in the diagonal of Ā22.

Proof. See Appendix A.4.

Remark 11. In the form (2.3), the index of columns of Ā11 are corresponding to input-

reachable state vertices in G(Ā, B̄), and the index of columns of Ā22 are corresponding

to the input-unreachable state vertices in G(Ā, B̄). The input-reachable/unreachable

vertices can be identified by running a depth-first search [163]. Besides, the term-rank

of ([Ā11, B̄1]) can be obtained by finding a maximum bipartite matching in B(Ā, B̄).

Thus, the maximum stabilizable subspace can be determined in polynomial time O(n3).

5.3 Optimal Actuator-Attack and Recovery Problems

In this section, equipped with the results from Section 5.2, we show the NP-hardness

of Problem 9 and Problem 10 in Theorem 17 and Theorem 19, respectively. Then, we

introduced a greedy algorithm to solve Problem 10 – see Algorithm 7. Besides, we show

that Algorithm 7 achieves a (1− 1/e) approximation guarantee to the optimal solution

of Problem 10, which is formally captured in Theorem 20.

5.3.1 Computational Complexity of the Optimal Actuator-disabling

Attack Problem

Suppose that there is no self-loop in the system digraph of a structural pair (Ā, B̄) and

the Condition-2) in Theorem 15 is satisfied. Then, we will show that Problem 9 is equiv-
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alent to minimizing the number of input-reachable states by removing a limited number

of inputs. This problem shares the similarities with Min-k-Union problem described

next.

Definition 13 (Min-k-Union Problem [164]). Given a universe US = {S`}p`=1 and an

integer k ∈ Z+, find

L∗ = arg min
L={`i}ki=1

|
k⋃
i=1

S`i |

s.t. L ⊆ [p].

(5.4)

Therefore, we aim at selecting a limited number of sets whose union is minimized, leading

to the following result.

Theorem 17. The Optimal Actuator-disabling Attack Problem (Problem 9) is NP-hard.

Proof. See Appendix A.4.

Although the problem is NP-hard, that does not imply that all instances of the problem

are equally difficult. As a consequence, we now propose to characterize the approxima-

bility of Problem 9. In particular, we first consider a subclass of instances of Problem 9,

which satisfy the following assumption.

Assumption 3. The symmetrically structured matrix Ā ∈ {0, ?}n×n is such that for

any S ⊆ X , where X is the set of state vertices in the state digraph G(Ā), |N (S)| ≥ |S|.

Assumption 3 ensures that in the bipartite graph associated with G(Ā), there is no

right-unmatched vertex with respect to any maximum matching, i.e., the Condition-2)

in Theorem 15 is always satisfied. We then have the following theorem.

Theorem 18. Under Assumption 3, denote by m1 the total number of sets (i.e., {Si}m1
i=1)

in an instance of Min-k-Union problem, and m2 the total number of candidate inputs

in an instance of Problem 9. Additionally, let ρ : Z → R. Then, there exists a ρ(m1)-

approximation algorithm for Min-k-Union problem if and only if there exists a ρ(m2)-

approximation algorithm for Problem 9.

Proof. See Appendix A.4.
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As a result of Theorem 18, any approximation algorithm solving Min-k-Union problem

can be adapted to solve Problem 9 with approximation guarantees.

5.3.2 Solution to the Optimal Recovery Problem

To investigate the computation complexity of obtaining a solution to Problem 10, we

take a similar strategy to that used in the previous section, i.e., we first consider the

following special instance: the pair (Ā, B̄) satisfies the Assumption 1. In this case, we

will show that Problem 10 is equivalent to adding a limited number of actuators to

maximize the total number of input-reachable state vertices, which is similar to the

Max-k-Union problem, stated as follows.

Definition 14 (Max-k-Union Problem [165]). Given a universe US = {S`}p`=1 and an

integer k ∈ Z+, find

L∗ = arg max
L={`i}ki=1

|
k⋃
i=1

S`i |

s.t. L ⊆ [p].

(5.5)

Thus, we obtain the following theorem.

Theorem 19. The Optimal Recovery Problem (Problem 10) is NP-hard.

Proof. See Appendix A.4.

A natural approximation solution to optimal design problems is through greedy algo-

rithms [166]. Although greedy algorithms may not provide an optimal solution, under

specific objective functions of the problem, a suboptimal solution with suboptimally

guarantees can be provided. Specifically, a particular class of problem with such prop-

erties is called submodularity function problems, defined as follows.

Definition 15 (Submodular function [166]). Let Ω be a nonempty finite set. A set

function f : 2Ω → R, where 2Ω denotes the power set of Ω, is a submodular function if

for every J1,J2 ⊆ Ω with J1 ⊆ J2 and every i ∈ Ω \ J2, we have f(J2 ∪ {i})− f(J2) ≤

f(J1 ∪ {i})− f(J1).
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Algorithm 7: (1− 1/e) approximation solution to Problem 10

Input: The pair (Ā, B̄), B̄Ucan ∈ {0, ?}n×m
′
, and the budget k;

Output: Suboptimal solution J ;
1: Initialize J ← ∅, L ← [m′];

% L is the set of indices of new actuators in Ucan that can be added to
the system.

2: for iteration i ∈ [k] do
3: for each j ∈ L do
4: dj ← m-dim(Ā, [B̄, B̄can(J ∪ {j})]);
5: end for
6: I ← {i : di = max{dj}|L|j=1};
7: Pick a j ∈ I;
8: J ← J ∪ {j};
9: L ← L \ {j};

10: end for
11: Return J

The greedy algorithm [166] achieves a (1 − 1/e)-factor approximation to the optimal

solution provided that the objective function is submodular. In this paper, we show

that the objective function in Problem 10 is submodular; hence, the greedy algorithm

provides a constant factor guarantee to the optimal solutions.

Theorem 20. Algorithm 7 returns a (1 − 1/e)-approximation of the optimal solution

to Problem 10.

Proof. See Appendix A.4.

Remark 12. In [167], the authors argue that insofar there is no constant factor ap-

proximation to the Min-k-Union problem. Thus, together with Theorem 18, we cannot

use the greedy algorithm to approximate Problem 9 with guarantee.

5.4 Illustrative Examples

In this section, we present examples to illustrate our results on structural stabilizability

and approximation solution to Problem 10.
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𝑥7

𝑥9 𝑥10

𝑥8

𝑥11

Figure 5-1: In this figure, we depict the structure of G(Ā, B̄). The red vertex labeled
by u1 and black vertices labeled by x1, . . . , x11 are the input vertex and state vertices,
respectively. The black arrows represent the edges from input vertex to state vertices,
as well as edges between state vertices.

5.4.1 Examples on Maximum Dimension of Stabilizable Subspace

We consider a structural pair (Ā, B̄), where Ā ∈ {0, ?}11×11 is symmetrically structured

and B̄ ∈ {0, ?}11×1 is structured.

Ā =



0 a12 0 a14 a15 0 0 0 0 0 0
a12 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 a36 a37 0 0 0 0
a14 0 0 0 0 0 0 0 0 0 0
a15 0 0 0 0 0 0 0 0 0 0
0 0 a36 0 0 a66 0 0 0 0 0
0 0 a37 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 a810 0
0 0 0 0 0 0 0 0 a99 a910 0
0 0 0 0 0 0 0 a810 a910 0 a1011
0 0 0 0 0 0 0 0 0 a1011 0


, B̄ =


b11
0
0
b41
0
0
0
0
0
0
0

 . (5.6)

We depict the digraph representation of the structural pair (Ā, B̄), denoted by G(Ā, B̄),

in Figure 5-1. Since x3 and x7 are unreachable vertices and they do not have self-loops,

the pair (Ā, B̄) is not structurally stabilizable due to Theorem 15. Furthermore, the

total number of right-matched (with respect to any maximum matching in the associated

bipartite graph B(Ā, B̄)) reachable vertices is 3, and the total number of unreachable

vertices with self-loop is 2. Therefore, by invoking Theorem 16, we conclude that the

maximum stabilizable subspace is 3 + 2 = 5.

5.4.2 Examples on the Optimal Recovery Problem

Now, we present an example to illustrate the use of Algorithm 7. Consider again the

structural pair (Ā, B̄) specified in (5.6). As noted in the last subsection, the (Ā, B̄)

is not structurally stabilizable. We let Ucan = {ui}7i=2 be the set of candidate actu-

ators that can be added into the system and associate it with the structured matrix

B̄Ucan ∈ {0, ?}11×6, of which nonzero entries are captured by the red edges of the
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Figure 5-2: In this figure, we depict the digraph G(Ā, [B̄, B̄Ucan ]). We use red and black
vertices to represent input vertices and state vertices, respectively. The black and red
arrows represent are the edges in EX ,X ∪ E{u1},X and edges in EUcan,X , respectively.

digraph G(Ā, [B̄, B̄Ucan ]) depicted in Figure 5-2. We have obtained in the last sub-

section that m-dim(Ā, B̄) is 5. Suppose we have a budget k = 3, then Problem 10

consists in adding 3 actuators from Ucan into the system such that the maximum sta-

bilizable subspace is maximized. In the first iteration of Algorithm 7, u4 is selected

because m-dim(Ā, [B̄, B̄Ucan({4})]) − m-dim(Ā, B̄) = 4 ≥ m-dim(Ā, [B̄, B̄Ucan({i})]) −

m-dim(Ā, B̄),∀ui ∈ Ucan. Similarly, in the second iteration, u3 is selected by Algo-

rithm 7. This results that m-dim(Ā, [B̄, B̄Ucan({3, 4})]) = 10. Finally, u7 is selected and

m-dim(Ā, [B̄, B̄Ucan({3, 4, 7})]) = 11. Since the maximum possible stabilizable subspace

is always less than or equal to the total number of states, in this example, Algorithm 7

returns an optimal solution to Problem 10.

5.5 General Structural Stabilizability

In Section 5.2, we have used graph theory to characterize necessary and sufficient con-

dition for structural stabilizability – see Theorem 15. However, such a condition is valid

only when the underlying system is captured by an undirected graph, i.e., the state ma-

trix A is symmetric. In this section, we aim to extend this result to general structural

systems. More specifically, our goal in this section is to solve the following problem:

Problem 11. Given a continuous-time linear time-invariant system ẋ = Ax +Bu, we

denote by (Ā, B̄) the structural pattern of (A,B). Let G(Ā, B̄) be the digraph represen-

tation of the structural pair. Find necessary and sufficient conditions in G(Ā, B̄) such

that (Ā, B̄) is structurally stabilizable.
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5.5.1 Characterizing General Structural Stabilizability

To solve the above problems, we first recall the definition of structural stabilizability –

see Definition 11. As discussed in Lemma 6 earlier this chapter, structural stabilizability

is equivalent to structural controllability when the structrual pair (Ā, B̄) is irreducible.

Therefore, in order to characterize structural stabilizability, we consider permuting the

pair (Ā, B̄) into the form (2.3) and analyze the graph-unreachable part of the structural

system. In other words, according to the definition of stabilizability, we have to find

conditions on when there exists a numerical realization Ã22 such that all its eigenvalues

are contained in the open left-half-plane. This motivates us to introduce the following

definition.

Definition 16 (Structural Hurwitz-stability). A structured matrix Ā is called struc-

turally Hurwitz-stable if there exists a numerical realization Ã of Ā such that all eigen-

values of Ã are contained in the open left-half-plane of C.

Next, we present a few sufficient and/or necessary conditions on when a structured

matrix is structurally Hurwitz-stable.

Lemma 9. Let Ā be a structured matrix, and G(Ā) be the digraph representation of Ā.

If every vertex xi has a self-loop, then Ā is structurally Hurwitz-stable.

Proof. If every vertex xi has a self-loop in G(Ā), then [Ā]ii is a ?-entry for all i ∈ [n].

In this case, we consider the following assignment on the ?-entries of Ā :

[Ã]ij =


−1, if i = j,

0, if i 6= j.

(5.7)

Thus, Ã = −I is a numerical realization of Ā and all eigenvalues of Ã are strictly less

than 0.

In the above construction of a numerical realization of Ā, we have set all off-diagonal

?-entries to zero and all diagonal entries to negative real numbers. Hereafter, we show

that it is possible to find a stable numerical realization of Ā with all its ?-entries are not
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equal to 0.

Lemma 10. Let Ā be a structured matrix and all conditions in Lemma 9 holds in G(Ā).

Then there exists a numerical realization of Ā with all its ?-entries are not equal to 0

such that Ã is (strictly) Hurwitz-stable.

Proof. Let dij be the independent parameter of [Ā]ij (provided that [Ā]ij is a ?-entry.

Since every vertex in G(Ā) has a self-loop, it is possible to assign values to dij such that

dii < −
∑

j 6=i |dij | for all i, j ∈ [n]. Subsequently, using Gershgorin’s disk theorem [168],

by setting [Ã]ij = dij for all [Ā]ij = ? and [Ã]ij = 0 otherwise, the matrix Ã is Hurwitz-

stable.

The above lemmas provide sufficient conditions on structural stabilizability. However,

such a condition is not necessary. Consider the following example where

Ā =

? ?

? 0

 .
In the digraph representation of Ā, only the first vertex has a self-loop, violating the

assumption in both Lemma 9 and 10. However, consider the following numerical real-

ization:

Ã =

−10 3

−3 0

 .
It is easy to see that Ã is Hurwitz-stable since both of its eigenvalues are strictly less

than 0. To partly strengthen the above graph-theoretical condition, we next present a

lemma that characterizes a necessary condition for structural Hurwitz-stability.

Lemma 11. Let Ā be a structured matrix, if there exists a (strictly) Hurwitz-stable

numerical realization Ã, then G(Ā) must contain at least one self-loop.

Proof. We proof this lemma by contradiction. Let us suppose thatG(Ā) does not contain

any self-loop. Following this assumption, all diagonal elements of Ā are fixed-zeros. Let

Ã be an arbitrary numerical realization of Ā, and denote by λi the i-th eigenvalue of
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Ã. Since Ã is asymmetric, we can write λi = σi + jωi for all i ∈ [n]. In order words, we

denote by σi and ωi the real and imaginary part of the eigenvalue λi. Subsequently, we

have that

Tr(Ã) =

n∑
i

λi

=

n∑
i=1

σi + jωi =

n∑
i=1

σi < 0,

where the last equality is due to the fact that solutions to characteristic polynomials

come in pairs. However, since all diagonal elements of Ã are zero, Tr(Ã) is equal to 0,

which is a contraction with the above derivation.
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Part II

Networked System Analysis via

Measure Theory
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Chapter 6

Bounds on the Spectral Radius of

Digraphs

In the first part of the thesis, we have used tools from structural systems theory and

graph theory to characterize properties in symmetrically structured linear systems. In

this chapter, we analyze global system properties using, solely, local structural informa-

tion. This chapter is organized as follows: In Section 6.1, we introduce certain notions

from algebraic graph theory used in our derivations. In Section 6.2, we relate the spec-

tral moments of a digraph to subgraph counts and introduce the truncated K-moment

problem from functional analysis, which we then use to upper and lower bound the spec-

tral radius using subgraph counts. In Section 6.3, we propose a refine approach to find

more accurate bounds on spectral radius by analyzing the skew-symmetric part of the

adjacency matrix. We numerically validate the quality of our bounds using randomly

generated directed graphs, as well as real networks in Section 6.4.

6.1 Adjacency Matrix and Digraph Isomorphism

In the rest of this chapter, we adopt notations introduced in Subsection 2.1.2. However,

we assume that the digraph under consideration is simple. Additionally, a subgraph
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Gs is called a bidirected edge if Vs = {i, j} and Es = {(i, j), (j, i)}, where i, j ∈ V. A

subgraph Gs is called a directed triangle if Vs = {i, j, k} and Es = {(i, j), (j, k), (k, i),

where i, j, k ∈ V.

A digraph G can be represented by an adjacency matrix A ∈ Rn×n, whose entries are

defined as [A]ij = 1 if (j, i) ∈ E ; [A]ij = 0 otherwise. Particularly, if the graph is

undirected, then A = A> and all its eigenvalues are real. When the digraph is simple,

all the diagonal entries of A are zero. In what follows, we use λ1, . . . , λn to denote

the eigenvalues of A. The eigenvalue spectrum of A is denoted by spec(A) = {λi}ni=1.

Moreover, the real part (respectively, imaginary part) of λi is denoted as σi (respectively,

ωi). Without loss of generality, we assume |λ1(A)| ≤ · · · ≤ |λn(A)|. The spectral radius

of A is defined as |λn(A)|. Furthermore, we denote by ωmax(A) = maxi |ωi|.

Two directed subgraphs Gs, Gh ⊆ G are said to be isomorphic [22], denoted by Gs ' Gh,

if there exist a bijection f : Vs → Vh such that (u, v) ∈ Es if and only if (f(u), f(v)) ∈

Eh for all u, v ∈ Vs. When Gs and Gh are non-isomorphic, we write Gs 6' Gh. In

particular, when Vs = Vh, the bijection f is called an automorphism and the two directed

subgraphs Gs and Gh are said to be automorphic, denoted by Gs
a' Gh. Consequently,

an automorphism is an equivalence relation on the set of directed subgraphs of the same

order, i.e., it classifies all possible directed subgraphs into equivalent classes. Based

on these notions, we define the isomorphic group (respectively, automorphic group) of

a directed subgraph Gs ⊆ G by Iso(Gs, G) = {Gh ⊆ G : Gh ' Gs} (respectively,

Auto(Gs, G) = {Gh ⊆ G : Gh
a' Gs}). Given a directed subgraph Gs ⊆ G, the count of

Gs is defined by

Count(Gs, G) =
|Iso(Gs, G)|
|Auto(Gs, G)|

.

Finally, let Ξs be the set of weakly-connected digraphs of order s. We denote by Ωs ⊆ Ξs,

the set of non-isomorphic strongly-connected digraphs of order s.
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6.2 Analyzing Spectral Radius Using Subgraph Counts

In the next subsections, we will establish a connection between the spectral moments

of G and the counts of certain subgraphs. Later on, in Subsection 6.2.3, we will exploit

recent results regarding the existence of measures with a given sequence of moments to

derive upper and lower bounds on the spectral radius of the graph in terms of these

subgraph counts (presented in Subsection 6.2.4). These bounds will be further refined

in Subsection 6.3.

6.2.1 From Subgraphs to Closed Walks

The eigenvalues of the adjacency matrix of a digraph are closely related to the walks

within the digraph, as stated in the following lemma:

Lemma 12 ([169]). Let A be the adjacency matrix of a simple digraph G. Given a

positive integer k, Tr(Ak) is equal to the total number of closed walks of length k in G.

Hereafter, we derive a relationship between the Tr(Ak) and the counts of subgraphs of

different sizes. To illustrate the idea behind our approach with a simple case, let us

decompose Tr(A2) (i.e., k = 2), as follows:

Tr(A2) =

n∑
i=1

[A2]ii =

n∑
i=1

n∑
j=1

[A]ij [A]ji =
∑

i,j : (i,j),(j,i)∈E

1, (6.1)

Note that the last term is counting (twice) the number of bidirected-edge subgraphs,

e.g., pairs of vertices connected by two directed edges with reciprocal directions. For

clarity, let us also consider the case k = 3. In this case, we can decompose the trace as,

Tr(A3) =

n∑
i=1

[A3]ii =
∑

i,j,k : (i,j),(j,k),(k,i)∈E

1. (6.2)

Therefore, Tr(A3) is equal to (three times) the number of directed triangles in G.

More generally, for given k ∈ N, we prove the following theorem:

Theorem 21. Consider a (simple) digraph G with adjacency matrix A. For all Ĝ ∈ Ωs
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Tr 𝐴2 2 0 0 0 0 0 0

Tr 𝐴3 0 3 0 0 0 0 0

Tr 𝐴4 2 0 0 4 0 4 0

Tr 𝐴5 0 0 5 0 5 0 5

Figure 6-1: This table shows the values of η(Ĝ, k), defined in Theorem 21, for k ≤ 5.
The value k indexes the powers of A in the rows, while the columns of the table are
indexed by all non-isomorphic strongly-connected subgraphs of order at most 5 involved
in the computation of the traces up to the fifth power. For example, from the second
row of the table, we infer that Tr(A3) equals 3 times the number of directed triangles
(second column in the table).

and all positive integers k, we define η(Ĝ, k) as the number of closed walks of length k

in Ĝ visiting all the edges of Ĝ at least once. Then, the following holds

Tr(Ak) =
k∑
s=2

∑
Ĝ∈Ωs

η(Ĝ, k) Count(Ĝ,G). (6.3)

Proof. See Appendix A.5.

Based on Theorem 21, we can fill a table with the values of η(Ĝ, k) for different values

of k (see Figure 6-1). The rows in this table are indexed by those subgraphs involved in

the computation of the traces up to the fifth power. The coefficients in this table can

then be used to compute Tr(Ak) for k ≤ 5, as a linear combination of the counts of the

subgraphs plotted in the table. For example, from the first row of the table, we infer that

Tr(A2) is equal to two times the count of bidirected-edge subgraphs. Similarly, from the

second row, we infer that Tr(A3) equals three times the count of directed triangles.
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6.2.2 From Subgraph Counts to Spectral Moments

In this subsection, we derive a relationship between closed walks in G and the power-

sums of the eigenvalues in A. To achieve this goal, we first introduce some notions from

probability theory. Let µ be a measure on Rn. The support of µ, denoted as Supp(µ), is

defined as the smallest closed set C ⊆ Rn such that µ(Rn \ C) = 0, [170]. The measure

µ is called r-atomic if |Supp(µ)| = r, i.e., a discrete set of cardinality r. The k-th

moment of an R-valued random variable x is defined as E[xk] =
∫
R x

kdµx, where µx

is the corresponding probability measure of x. Given an Rn-valued random variable x,

and an n-dimensional vector of integers α ∈ Nn, we let xα =
∏n
i=1 x

αi
i . Subsequently,

the α-moment of x is defined as E[xα] =
∫
Rn
∏n
i=1 x

αi
i dµ, where µ is the probability

measure of x = [x1, . . . , xn]>. Moreover, the order of α is defined by |α| =
∑n

i=1 αi.

Given a digraph G, we define the spectral measure of its adjacency matrix A as the

following two-dimensional probability density:

µA(x, y) =
1

n

n∑
i=1

δ(x− σi)δ(y − ωi), (6.4)

where δ(·) is the Dirac’s delta measure, i.e., the probability measure on R that assigns

unit mass to the origin, and zero elsewhere. In other words, the spectral measure µA is

a discrete probability measure on R2 assigning a mass 1/n to each one of the n points

in the set {(σi, ωi)}ni=1. Furthermore, we define the α-spectral moments of G, where

α = [a, b]> ∈ N2, as the α-moment of the spectral measure µA, given by

mα(A) =

∫
R2

xaybdµA(x, y). (6.5)

We also write mab(A) as an abbreviation of mα(A). As demonstrated in [105], the

spectral moments of an undirected graph can be computed as a linear combination of the

counts of certain non-isomorphic subgraphs. Hereafter, we derive a similar relationship

between the spectral moments of a digraph G and the counts of certain (directed)

subgraphs contained in G. To achieve this goal, we start by deriving a closed-form
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expression of the α-spectral moments, as stated in the following lemma.

Lemma 13. Given a directed graph G with adjacency matrix A, it holds that

Tr
(
Ak
)

=

bk/2c∑
s=0

(
k

2s

)
(−1)s nm2s,k−2s(A), for all k ∈ N. (6.6)

Proof. From (6.4) and (6.5), the α-moment of the spectral measure for α = [a, b]>

equals

mab (A) =

∫
R

∫
R
xayb

1

n

n∑
i=1

δ (x− σi) δ (y − ωi) dxdy

=
1

n

n∑
i=1

[∫
xaδ (x− σi) dx

] [∫
ybδ (y − ωi) dy

]

=
1

n

n∑
i=1

σai ω
b
i ,

where σi and ωi are the real and imaginary part of the i-th eigenvalue of A, respectively.

Since Tr(Ak) equals the sum of the k-th powers of the eigenvalues of A, we have that

Tr
(
Ak
)

=
n∑
i=1

(σi + jωi)
k =

n∑
i=1

k∑
r=0

(
k

r

)
jrωri σ

k−r
i

=
n∑
i=1

bk/2c∑
s=0

(
k

2s

)
(−1)s ω2s

i σ
k−2s
i + j

bk/2c∑
s=0

(
k

2s+ 1

)
(−1)s ω2s+1

i σk−2s+1
i


=

bk/2c∑
s=0

(
k

2s

)
(−1)s

n∑
i=1

ω2s
i σ

k−2s
i + j

bk/2c∑
s=0

(
k

2s+ 1

)
(−1)s

n∑
i=1

ω2s+1
i σk−2s+1

i

=

bk/2c∑
s=0

(
k

2s

)
(−1)s nm2s,k−2s(A),

Notice that the imaginary term vanishes in the last equality, since Tr
(
Ak
)

is a purely

real quantity.

Combining Theorem 21 and (6.6), we have that

k∑
s=2

∑
Ĝ∈Ωs

η(Ĝ, k) Count(Ĝ,G) =

bk/2c∑
s=0

(
k

2s

)
(−1)s nm2s,k−2s(A), (6.7)

93



for all k ∈ N. This expression allows us to directly relate the moments of the spectral

measure of A to the counts of certain subgraphs in G.

6.2.3 The K-moment Problem

In many practical applications, such as the analysis of large-scale social networks, we

do not have access to the whole topology of the graph G. Therefore, it is not possible

to explicitly compute the eigenvalues of A. However, it may be possible to retrieve local

structural information in the form of subgraph counts by crawling the network. Since

in this situation it is not possible to exactly compute all the eigenvalues of A, it would

be interesting to have tools allowing us to infer spectral information, such as bounds

on eigenvalues, from the counts of small subgraphs in G. This is the main aim of this

paper.

As we will show below, the counts of certain subgraphs can be used to constraint the

moments of the spectral measure, which can then be used to find bounds on the spectral

radius. In particular, from the counts of certain subgraphs of order less or equal to k,

we can write down an equality constraint for linear combinations of spectral moments

using (6.7). However, it may be possible to find many different spectral measures (with

different supports) satisfying the linear constraints in (6.7). In what follows, we will

exploit recent results in the multidimensional moment problem [108] to compute outer

and inner bounds on the set of all all possible spectral supports. This result will directly

provide us with upper and lower bounds on the spectral radius of A.

To explain our approach, we first need to introduce the K-moment problem [108] and

related notions. A sequence y = {yα} indexed by α ∈ Nn is called a multi-sequence.

We will use multi-sequences to index the moments of Rn-valued random variables. In

particular, given a R2-valued random variable x ∼ µ and an index α = [a, b]> ∈ N2,

we will use the notation yα = yab to denote the α-moment of µ, i.e., yab = E[x[a,b]> ] =∫
R2 x

aybdµ(x, y).

Definition 17. Let K be a closed subset of Rn. Let yn,∞ = {yα}α∈Nn be an infinite real
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multi-sequence. A measure µ on Rn is said to be a K-representing measure for yn,∞ if

yα =

∫
Rn

xαdµ(x), for all α ∈ Nn, (6.8)

and

Supp(µ) ⊆ K. (6.9)

If yn,∞ has a K-representing measure, we say that yn,∞ is K-feasible. Similarly, a

finite real multi-sequence yn,2r = {yα}α∈Nn,|α|≤2r is said to be K-feasible if there exists

a measure µ with Supp(µ) ⊆ K such that (6.8) holds for all α ∈ Nn2r.

In this paper, we are interested in the case when K is characterized by polynomial

inequalities, as stated below.

Definition 18. A set K ⊆ Rn is called a semi-algebraic set if there exist m polynomials

gi : Rn → R such that

K = {x ∈ Rn : gi(x) ≥ 0 for all i ∈ [m]}. (6.10)

A necessary and sufficient condition to determine whether a finite multi-sequence is

K-feasible, restricted to the case when K is both semi-algebraic and compact, can be

stated in terms of linear matrix inequalities involving moment matrices and localizing

matrices, defined below.

Definition 19. [108] Let yn,2r = {yα}α∈Nn2r be a finite real multi-sequence. The moment

matrix of yn,2r, denoted by Mr(yn,2r), is defined as the real matrix indexed by Nnr and

having the entries

[Mr(yn,2r)]α,β = yα+β, (6.11)

for all α,β ∈ Nnr .

In this paper, we consider a particular order while indexing the entries of the moment

matrix, as described below. Consider x = [x1, . . . , xn]>, and let

M = {1, x1, . . . , xn, x
2
1, x1x2, . . . , x

2
n, . . . , x

r
1, x

r−1
1 x2, . . . , x

r
n}
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be the set of monomials with degree up to r, written in degree-lexicographic order. The

cardinality1 of M is given by
(
n+r
n

)
. Given an Rn-valued random variable x, suppose

that yn,2r = {yα}α∈Nn2r is a moment sequence of x, i.e., yα = E[xα] for all α ∈ Nn2r.

Then, according to Definition 21, the moment matrix of yn,2r is expressed entry-wise

by (6.11). In this case, we have

[Mr(yn,2r)]α,β = yα+β = E[xαxβ],

for all α,β ∈ Nnr . The right-hand side of the above equality can be viewed as taking

the expectation of the product between the α-th and the β-th monomial in M. We

use degree-lexicographic ordering to locate these moments inside the moment matrix.

Consequently, the exponent of the monomials in M index the columns and rows in

Mr(yn,2r), as shown in the example below.

Example 1. Let n = 2, r = 1, and y2,2 = {y00, y01, y10, y11, y02, y20}. Suppose α =

[0, 1]> and β = [1, 0]>, then [M1 (y2,2)]α,β = y11. Moreover, according to Definition 21,

the moment matrix of y2,2 is:

M1 (y2,2) =


E
[
x[00]ᵀx[00]ᵀ

]
E
[
x[00]ᵀx[10]ᵀ

]
E
[
x[00]ᵀx[01]ᵀ

]
E
[
x[10]ᵀx[00]ᵀ

]
E
[
x[10]ᵀx[10]ᵀ

]
E
[
x[10]ᵀx[01]ᵀ

]
E
[
x[01]ᵀx[00]ᵀ

]
E
[
x[01]ᵀx[10]ᵀ

]
E
[
x[01]ᵀx[01]ᵀ

]


=


y00 y10 y01

y10 y20 y11

y01 y11 y02

 .

The localizing matrix of a multi-sequence yn,2r with respect to a polynomial g : Rn → R

is defined as follows:

Definition 20. Consider a multivariate polynomial of degree v, g(x) =
∑

γ∈Nnv uγxγ ,

and a finite multi-sequence yn,2r = {yα}α∈Nn2r . The localizing matrix of yn,2r with respect

1The cardinality of the set M can be derived by a star-and-bar argument in combinatorial mathe-
matics, see for example [170].
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to g, denoted by Lr(g,yn,2r), is defined by the real matrix2:

[Lr(g,yn,2r)]α,β =
∑
γ∈Nnv

uγyγ+α+β, (6.12)

for all α,β ∈ Nnr .

Example 2. Consider Example 1 with n = 2 and r = 1. Suppose that g(x) = a− x1 +

x2
2, then u = {u00, u10, u02} with u00 = a, u10 = −1, u02 = 1. Subsequently, according

to (6.12), L1(g,y2,2) equals

L1(g,y2,2) =


ay00 − y10 + y02 ay10 − y20 + y12 ay01 − y11 + y03

ay10 − y20 + y12 ay20 − y30 + y02 ay11 − y21 + y13

ay01 − y11 + y03 ay11 − y21 + y13 ay02 − y12 + y04

 .

Hereafter, whenever clear from the context, we adopt the short-handed notation Mr to

represent Mr (yn,2r), and Lr(g) to represent Lr(g,yn,2r).

A necessary and sufficient condition for a finite multi-sequence y = {yα}α∈Nnr being

K-feasible is stated below.

Theorem 22. [108] Let K ⊆ Rn be a semi-algebraic set defined by (6.10) and v =

maxjddeg(gj)2 e. Given a finite multi-sequence yn,2r = {yα}α∈Nn2r , there exists a rank(Mr−v)-

atomic K-representing measure for yn,2r, if and only if,

Mr(yn,2r) � 0, and Lr−v(gj ,yn,2r) � 0, for all j ∈ [m],

rank(Mr(yn,2r)) = rank(Mr−v(yn,2r)).

(6.13)

In addition to this theorem, we present a corollary that is useful in the development of

our framework.

Corollary 3. Let K ⊆ Rn be a semi-algebraic set defined as in (6.10) and v =

maxjddeg(gj)2 e. Given a finite multi-sequence yn,2r = {yα}α∈Nn2r , if yn,2r is K-feasible,

2As described above, the elements of this matrix are ordered using degree-lexicographic ordering of
α and β.
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then

Mr(yn,2r) � 0, and Lr−v(gjyn,2r) � 0, for all j ∈ [m]. (6.14)

Based on Theorem 22, one can verify whether a given multi-sequence is K-feasible by

verifying the positive semidefiniteness of finitely many matrices. In the next subsection,

we make use of Theorem 22 to provide upper and lower bounds on spectral radius of a

directed graph given counts of subgraphs contained in G up to order r.

6.2.4 Lower Bounds using the K-moment Problem

In this subsection, we aim to obtain upper and lower bounds for the spectral radius

of A by leveraging the connection between subgraph counts and the spectral moments

of G, as shown in (6.7). To obtain a lower bound on the spectral radius, we use the

theory behind the K-moment problem to characterize all K-feasible multi-sequences,

y2,d = {yα}α∈N2
d
, for particular choices of K. Following this idea, we next present

necessary conditions for the existence of a spectral measure supported on K.

As shown in (6.7), the moments of a (spectral) measure must obey linear constraints

imposed by the counts of certain subgraphs in G. In other words, if a multi-sequence

y2,d is a feasible spectral moment sequence, then there exists a spectral measure µA such

that yα = EµA [xα], for all α ∈ N2
d (see Definition 17). Furthermore, according to (6.6),

the entries of the sequence y2,d must satisfy the following linear constraints:

k∑
s=2

∑
Ĝ∈Ωs

η(Ĝ, k) Count(Ĝ,G) = n

bk/2c∑
s=0

(
k

2s

)
(−1)s yk−2s,2s, (6.15)

for k ∈ [d], where the left-hand side is a function of the counts of certain subgraphs of

order up to d.

In addition to the above linear constraint, we notice that {λi}ni=1 are the eigenvalues

of an adjacency matrix and the eigenvalue spectrum of A is symmetric with respect to

the real-axis in the complex plane. Therefore, the moments of a spectral measure must
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satisfy:

yab = 0 for b odd. (6.16)

Furthermore, when a and b are both even, we have that mab(A) = 1
n

∑n
i=1 σ

a
i ω

b
i ≥ 0.

Therefore, the moments of a spectral measure must also satisfy:

yab ≥ 0 for a and b even. (6.17)

Let us define r = bd2c. In order to ensure that y2,d is a feasible spectral moment sequence,

the moment matrix defined by

[Mr]αβ = yα+β, for α,β ∈ N2
r (6.18)

must be positive semidefinite according to Corollary 3. Furthermore, since A is entry-

wise non-negative, the spectral radius of A equals λn according to Perron-Frobenius

theory [168]. This also implies that ωi ≤ ρ for all i ∈ [n] and ρ = λn. Consequently, the

support of the spectral measure of A is contained in the square

S = {x ∈ R2 : x1 ∈ [−ρ, ρ], x2 ∈ [−ρ, ρ]}.

Let x = [x1, x2]> and define the polynomials g1(x) = ρ − x1, g2(x) = x1 + ρ, g3(x) =

ρ− x2, and g4(x) = x2 + ρ. The set S can be defined by

S = {x ∈ R2 : gi(x) ≥ 0, for i ∈ [4]},

which is both compact and semi-algebraic. According to Corollary 3, the localizing

matrices of y2,d with respect to {gi}i∈[4] must be positive semidefinite. These matrices

are given, entry-wise, by

[Lr(g1)]αβ = ρyα+β − yα+β+[1,0]> , (6.19)

[Lr(g2)]αβ = ρyα+β + yα+β+[1,0]> , (6.20)
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[Lr(g3)]αβ = ρyα+β − yα+β+[0,1]> , (6.21)

[Lr(g4)]αβ = ρyα+β + yα+β+[0,1]> , (6.22)

for α,β ∈ N2
r . Therefore, the moment sequence y2,d of the spectral measure of a matrix

with spectral radius ρmust satisfy (6.15)–(6.17), and the moment and localizing matrices

defined in (6.18)–(6.22) must be positive semidefinite.

Remark 13. Notice that, since |λi| ≤ ρ for all i ∈ [n], the support of the spectral

measure is also contained in the circle

Sc = {[x, y]> ∈ R2 : x2 + y2 ≤ ρ2}.

Defining gc = ρ2−x2− y2, we have that Sc = {[x, y]> ∈ R2 : gc([x, y]>) ≥ 0}. Therefore,

the localizing matrix with respect to gc of the moment sequence y2,d, given by

[Lr(gc)]αβ = ρ2yα+β − yα+β+[2,0]> − yα+β+[0,2]> , (6.23)

must satisfy Lr−1(gc) � 0 for y2,d to be a valid moment sequence of the spectral measure

of a matrix with spectral radius ρ (see Corollary 1).

In what follows, we propose to find a lower bound on the spectral radius of A by solving

a semidefinite program aiming to minimize the value of the parameter ρ in (6.19)–(6.23)

while satisfying all the constraints described above. Subsequently, the solution to this

semidefinite program renders a lower bound on the spectral radius of A, denoted by λn,

as shown in the following theorem.

Theorem 23. Let r be an arbitrary positive integer and d = 2r + 1. Denote by ρ?
r

the

solution of the following semidefinite program:

minimize
ρ,y2,d

ρ

subject to (6.15)–(6.17),

Mr � 0,

Lr(gi) � 0, for all i ∈ [4],

(6.24)
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where Mr and Lr(gi) are defined in (6.18)–(6.22). Then, ρ?
r
≤ λn for all r ∈ N. Fur-

thermore, ρ?
r

is a non-decreasing function of r ∈ N.

Proof. See Appendix A.5.

Theorem 23 allows us to compute a family of lower bound, parameterized by r, on the

spectral radius of a digraph from counts of subgraphs up to order d = 2r + 1. In what

follows, we provide a similar result to obtain a family of upper bounds on the spectral

radius of A.

6.2.5 Upper Bounds using the K-moment Problem

From Perron-Frobenius theory [168], we know that the spectral radius of A is equal

to the largest (nonnegative) real eigenvalue of A, denoted by λn. Hence, the set of

eigenvalues λ1, . . . , λn−1 must be contained inside a circle of radius λn, denoted by Sλn .

In other words, if we define an auxiliary atomic density with n− 1 atoms located on the

positions of the eigenvalues λ1, . . . , λn−1, the multi-sequence of moments of this auxiliary

density must be Sλn-feasible. Furthermore, we can consider a circle of radius ρ, denoted

by Sρ, and find the maximum value of ρ for which the multi-sequence of moments of the

auxiliary density is Sρ-feasible. This optimal value of ρ will provide us with an upper

bound on the spectral radius λn. In what follows, we elaborate on the details behind

this approach.

We start our derivation with the following observation:

k∑
s=2

∑
Ĝ∈Ωs

η(Ĝ, k) Count(Ĝ,G) = λkn +

n−1∑
i=1

λki , (6.25)

for all k ∈ N. Let us introduce the following auxiliary atomic measure

µ̃A(x, y) =
1

n− 1

n−1∑
i=1

δ(x− σi)δ(y − ωi). (6.26)

We denote by m̃α the α-moment of µ̃A. In what follows, we use the theory behind the K-
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moment problem to derive necessary conditions that must be satisfied for all K-feasible

multi-sequences, z2,d = {zα}α∈N2
d
, for particular choices of K. In our derivations, we

make use of the following lemma:

Lemma 14. Given a directed graph G with adjacency matrix A, it holds that

Tr(Ak) = λkn + (n− 1)

bk/2c∑
s=0

(
k

2s

)
(−1)s m̃k−2s,2s, for all k ∈ N. (6.27)

Proof. From (6.26), the α-moment of µ̃A for α = [a, b]> equals

m̃ab =
1

n− 1

∫
R

∫
R
xayb

n−1∑
i=1

δ (x− σi) δ (y − ωi) dxdy

=
1

n− 1

n−1∑
i=1

σai ω
b
i .

(6.28)

From the proof of Lemma 3, we have that mab(A) = 1
n

∑n
i=1 σ

a
i ω

b
i . Combining this

with (6.28), we have that

m̃ab =


n

n− 1
mab, if b > 0,

nmab − σan
n− 1

, if b = 0.

(6.29)

Leveraging the connection between mab(A) and Tr(Ak) (see (6.6)), we have

Tr(Ak) = n

bk/2c∑
s=0

(
k

2s

)
(−1)smk−2s,2s (A)

= (n− 1)

bk/2c∑
s=1

(
k

2s

)
(−1)s m̃k−2s,2s + (n− 1)m̃k,0 + σkn

= (n− 1)

bk/2c∑
s=0

(
k

2s

)
(−1)s m̃k−2s,2s + σkn.

Furthermore, according to Perron-Frobenius theory, we have that λn = σn. Thus, we

obtain that

Tr(Ak) = (n− 1)

bk/2c∑
s=0

(
k

2s

)
(−1)s m̃k−2s,2s + λkn, (6.30)

for all k ∈ N.
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If z2,d is the moment multi-sequence for µ̃A, then zα = Eµ̃A [xα], for all α ∈ N2
d (see

Definition 17). Furthermore, according to Lemma 14 and Theorem 21, the entries of

the sequence z2,d must satisfy the following linear constraint:

k∑
s=2

∑
Ĝ∈Ωs

η(Ĝ, k) Count(Ĝ,G) = (n− 1)

bk/2c∑
s=0

(
k

2s

)
(−1)s zk−2s,2s + ρk, (6.31)

for k ∈ [d]. Moreover, similar to (6.16) and (6.17), we also have that

zab = 0 for b odd, (6.32)

zab ≥ 0 for a and b even. (6.33)

Notice that the support of µ̃A(x, y) is contained in the square S = [−λn, λn]2. Thus,

the moment and localizing matrices corresponding to z2,d have the same form as those

in (6.18)–(6.22) after substituting yα by zα. As a result, we obtain the following moment

and localizing matrices:

[M̃r]αβ = zα+β, (6.34)

[L̃r(g1)]αβ = ρzα+β − zα+β+[1,0]> , (6.35)

[L̃r(g2)]αβ = ρzα+β + zα+β+[1,0]> , (6.36)

[L̃r(g3)]αβ = ρzα+β − zα+β+[0,1]> , (6.37)

[L̃r(g4)]αβ = ρzα+β + zα+β+[0,1]> , (6.38)

for α,β ∈ N2
r . As required by Corollary 3, the moment matrix (6.34) and localizing

matrices (6.35)–(6.38) must be positive semidefinite. As a result, for ρ = λn, the

moment sequence z2,d of the auxiliary spectral measure µ̃A must satisfy (6.31)–(6.33)

and the moment and localizing matrices in (6.34)–(6.38) must be positive semidefinite.

In what follows, we find an upper bound on the spectral radius by solving a semidefinite

program whose objective is to maximize the value of the parameter ρ in (6.31)–(6.38),
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while satisfying all the aforementioned constraints, as described in the following theorem.

Theorem 24. Let r be an arbitrary positive integer and d = 2r + 1. Denote by ρ?r the

solution of the following semidefinite program:

maximize
ρ,z2,d

ρ

subject to (6.31)–(6.33),

M̃r � 0,

L̃r(gi) � 0, for all i ∈ [4],

(6.39)

where M̃r and L̃r(gi) are defined in (6.34)–(6.38). Then, ρ?r ≥ λn for all r ∈ N. Fur-

thermore, ρ?r is a non-increasing function of r ∈ N.

Proof. See Appendix A.5.

Using Theorem 23 and Theorem 24, we can compute lower and upper bounds on the

spectral radius of a directed graph using counts of subgraphs in G. Furthermore, these

bounds become tighter as the order of subgraphs under consideration increases.

6.2.6 Illustration and Discussion

To demonstrate the performance of these bounds, we apply our methodology to a di-

rected graph modeling the connections between n = 1, 574 different airports within the

United States [171]. Assuming we are able to count the number of all subgraphs of

order up to 6, the upper bound on the spectral radius obtained via Theorem 24 equals

ρ?3 = 99.2906, whereas the actual spectral radius equals λn = 99.1183. However, when

we only have access to the counts of subgraphs of small order, our approach can lead

to loose bounds. For example, considering a realization of the Erdős-Rényi random di-

rected graph with n = 100 vertices and P((i, j) ∈ E) = 0.15 for all i, j ∈ V, we obtain a

spectral radius of λn = 14.5431. In this case, when the counts of subgraphs of order up

to 4 are available, the lower bound obtained using Theorem 23 is ρ?
2

= 5.5. This bound

is loose for the following two reasons: First, although Theorem 23 and Theorem 24
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Figure 6-2: In (a), we plot the complex eigenvalues of A for an Erdős-Rényi random
directed graph with n = 500 vertices and edge probability 0.1.The spectral radius of A
is λn ≈ 50, whereas ωmax < 7. In (b), we plot the complex eigenvalues of A for a real
social network from Google+ [171]. The spectral radius of λn ≈ 21, whereas ωmax < 1.5.

provide lower and upper bounds on the spectral radius, the moments of the optimal so-

lutions may not correspond to an n-atomic measure, since Corollary 3 does not provide

a sufficient condition to guarantee the existence of an n-atomic measure. Secondly, and

more importantly, we have assumed that spec(A) is contained in the square [−λn, λn]2.

However, the support of µA is contained in [−λn, λn] × [−ωmax, ωmax], where ωmax can

be much smaller than λn in some real digraphs, leading to loose bounds (see Figure 6-2).

In the following Section, we propose a refinement of our technique in order to overcome

this issue by finding better bounds on ωmax.

6.3 Refined Moment-based Bounds

In this section, we introduce a refined moment-based framework to improve the quality

of our bounds on the spectral radius. The main idea behind this approach is to obtain

an upper bound on ωmax. To achieve this goal, we will study the spectral measure of the

matrix A−A>. As we discuss below, the largest imaginary part among the eigenvalues

of A−A> upper-bounds ωmax of A. We then relate the spectral moments of A−A> to
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the counts of certain subgraphs in G. Finally, we will resort to the K-moment problem

to provide an upper bound on ωmax. This upper bound will be further used to provide

refined upper and lower bounds on the spectral radius of A.

In order to provide an upper bound on ωmax of A, we first present a connection between

the eigenvalues of the (imaginary) matrix AI = j(A−A>) and those of A. Notice that

the matrix A − A> is skew-symmetric; hence, its eigenvalues are a collection of purely

imaginary conjugate pairs. Hence, the spectrum of AI is purely real and symmetric

around the imaginary axis. From [94], we have that

ωmax ≤
1

2
max{v∗AIv : v∗v = 1,v ∈ Cn} = λn(AI),

where λn(AI) is the largest (real) eigenvalue of AI . In particular, the equality holds

if and only if A is normal. Using this relationship, we will provide an upper bound

on ωmax using traces of powers of AI . In what follows, we show a linear relationship

between counts of certain subgraphs in G and Tr(A`I).

6.3.1 From Open-walks in G to Traces of Powers of AI

Hereafter, we show that Tr(A`I) can be computed by a linear combination of the counts

of specific subgraphs in G. To show this, we first provide a closed-form expression of the

term Tr(A`I) using entries of AI . On the one hand, since the spectrum of AI is symmetric

around the imaginary axis, we have that Tr(A`I) = 0 for ` odd. On the other hand, when

` is an even number, we have that

Tr(A`I) = Tr(j`(A−A>)`),

= (−1)
`
2 Tr

(
(A−A>)`

)
,

= (−1)
`
2

∑
ci,di∈{0,1}
ci+di=1

(−1)
∑`
i=1 diTr

[
Ac1(A>)d1 · · ·Ac`(A>)d`

]
.

(6.40)

Therefore, Tr(A`I) is equal to the sum of 2` terms. Using similar ideas than those used

in the proof of Theorem 21, one can show that Tr
[
Ac1(A>)d1 · · ·Ac`(A>)d`

]
is equal to
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(𝑎)

Tr 𝐴3𝐴𝑇 = 2 × +1 × +1 × +1 ×

(𝑏)

Tr 𝐴2(𝐴𝑇)2 = 2 × +2 × +1 × +2 ×

(𝑐)

Tr( 𝐴𝐴𝑇 2 = 1 × +2 × +2 × +4 ×

(𝑑)

Tr( 𝐴𝑇𝐴 2) = 1 × +2 × +2 × +4 ×

Figure 6-3: This figure shows the relationship between Tr(A4
I) and the counts of certain

subgraphs in G. More specifically, the traces in the figure are equal to sums of counts
of certain subgraphs multiplied by the coefficients indicated in the figure. In (c), to
calculate Tr((AA>)2), we use the sum of in-degrees. In (d), to calculate Tr((A>A)2),
we use the sum of out-degrees. Since Tr((AA>)2) = Tr((A>A)2), we can use either sum
of in-degrees or out-degrees to obtain Tr((AA>)2).

a linear combination of the counts of certain subgraphs in G. We illustrate this idea by

considering the following examples.

Example 3. When ` = 2, we have that

Tr(A2
I) = −Tr(A−A>)2

= −Tr(A2 −AA> −A>A+ (A>)2)

= −Tr(A2) + 2Tr(AA>)− Tr(A>)2

= −2Tr(A2) + 2Tr(AA>).

(6.41)

In this particular case, we notice that Tr(A2) =
∑

i,j:(i,j),(j,i)∈E 1 (see (6.1)) and Tr(AA>) =∑
i,j:(j,i)∈E 1. The latter term equals the sum of in-degrees of each vertex i in G. Con-

sequently, Tr(A2
I) equals twice the total number of edges minus twice the counts of

bidirected-edge subgraphs in G.

Let us consider an additional example when ` = 4.

Example 4. When ` = 4, we have that

Tr(A4
I) = Tr((A−A>)2(A−A>)2). (6.42)
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Using the properties of matrix trace operations, the above term is simplified to

Tr(A4
I) = 2Tr(A4)− 8Tr(A3A>) + 4Tr(A2(A>)2) + 2Tr((AA>)2). (6.43)

In what follows, we show that Tr(A3A>), Tr(A2(A>)2) and Tr((AA>)2) can all be cal-

culated using the counts of certain subgraphs in G. We characterize those relationships

in Figure 6-3. For demonstration purposes, we only show below the relationship between

the term Tr((AA>)2) and subgraph counts. Others traces can be computed in a similar

fashion.

First, notice that

Tr((AA>)2) =
∑
i

∑
j,k,l

[A]ij [A]kj [A]kl[A]il, (6.44)

where the inside term is non-zero if and only if (j, i), (j, k), (l, k), (l, i) are all edges of

the digraph G. Next, we consider whether some of the indices i, j, k, l ∈ [n] are equal.

Since G is simple, Aii = 0 for i ∈ [n]. Therefore, to ensure that [A]ij [A]kj [A]kl[A]il

is non-zero, it suffices to consider the following cases: (i) i, j, k, l are all distinct, (ii)

i = k while j 6= l, (iii) i = k while j = l, and (iv) i 6= k while j = l. In case ( i),

where i, j, k, l are all distinct, the ordered edges (j, i), (j, k), (l, k), (l, i) together corre-

spond to a subgraph of size four. However, notice that by permuting the indices, we

obtain (l, i), (l, k), (k, j), (j, i), which corresponds to the same subgraph (analogously for

(l, k), (l, i), (j, i), (j, k) and (j, k), (j, i), (l, i), (l, k)). As a result, the same subgraph is

counted four times in the summation (6.44). Thus, the coefficient corresponding to this

subgraph is 4 when calculating Tr((AA>)2). In case ( ii), the constraints given above

induce a subgraph formed by the following ordered sequence of edges: {(j, i), (l, i)}, while

{(l, i), (j, i)} is another sequence representing the same subgraph. Thus, such a subgraph

contributes twice in (6.44) and the associated coefficient is 2. In case ( iii), i = k and

j = l, therefore [A]ij [A]kj [A]kl[A]il = [A]ij, since A is unweighted. Hence, summing

over all i in case ( iii) corresponds to the sum of in-degrees of each vertex. Case ( iv) is

identical to case ( ii).

Remark 14. Instead of Tr((AA>)2), we may use Tr((A>A)2) in (6.43) to obtain
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Tr(A4
I). In this case, the subgraphs under consideration are listed in Figure 6-3-(d).

This observation can be generalized to all the terms involving traces of products of A

and A> in (6.40).

Remark 15. In general, finding a closed-form expression for the coefficients for the

subgraphs using (6.40) is difficult. Moreover, to obtain Tr(ArI), one has to derive the

counts for all subgraphs of size r, which can be computationally challenging when r is

large. However, in most real networks, we obtain a tight approximation of the spectral

radius by considering r ≤ 6, as we will show empirically in Section 6.4.

Next, we propose a method to upper bound the spectral radius of AI using the K-

moment problem.

6.3.2 Estimation of ωmax(A)

To upper bound the spectral radius of AI , we follow a similar procedure as the one

discussed in the previous section. Given AI , we define the spectral measure of AI as the

following one-dimensional probability density:

νAI (x) =
1

n

n∑
i=1

δ(x− λi(AI)). (6.45)

Since λi(AI) ∈ R, the measure νAI is supported on R. Without loss of generality, we can

order the eigenvalues of AI by λ1(AI) ≤ · · · ≤ λn(AI). Since A−A> is skew-symmetric,

we have that λ1(AI) = −λn(AI). The support of νAI must satisfy Supp(ν(AI)) ⊆

[−λn(AI), λn(AI)].

In addition to νAI , we define the auxiliary spectral measure ν̃AI by

ν̃AI (x) =
1

n− 2

n−1∑
i=2

δ(x− λi(AI)), (6.46)

which is an (n− 2)-atomic measure defined by removing both λ1(AI) and λn(AI) from

spec(AI). Different from µ̃A, we remove two atoms from spec(AI) to maintain the

symmetry (with respect to the origin) of the auxiliary measure. Consequently, the
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supports of both νAI and ν̃AI are contained in [−λn(AI), λn(AI)].

Following an idea similar to the one presented in the previous section, we show that

the trace of A`I is related to the moments of both νAI and ν̃AI . More specifically, given

a positive integer r ∈ N, we compute the r-th moment of νAI , denoted by mr(AI), as

follows:

mr(AI) =

∫
x∈R

xkdνAI =
1

n

n∑
i=1

λi(AI)
r =

1

n
Tr(ArI). (6.47)

Similarly, the r-th moment of ν̃AI , denoted by m̃r(AI), is equal to

m̃r(AI) =

∫
x∈R

xkdν̃AI

=
1

n− 2

n−1∑
j=2

λi(AI)
r

=
1

n− 2
[Tr(ArI)− ((−1)r + 1)λn(AI)

r]

=
1

n− 2
[nmr(AI)− ((−1)r + 1)λn(AI)

r] .

(6.48)

To obtain an upper bound on λn(AI), we first find necessary conditions that must be

satisfied by all moment sequences of ν̃AI , denoted by w2r+1 = {wγ}γ≤2r+1. Since the

spectrum of AI is symmetric around 0, it follows that all odd moments of νAI and ν̃AI

are 0. As a result, in order for w2r+1 to be a moment sequence with respect to ν̃AI , we

must have:

wγ =


1, if γ = 1,

0, if γ > 1 and γ is an odd number,

1

n− 2

(
Tr(AγI )− 2λn(AI)

γ
)
, otherwise,

(6.49)

for all γ ≤ 2r + 1.

Moreover, the moment and localizing matrices of w2r+1 must be positive semidefinite,

as required by Theorem 22. More specifically, we let the moment matrix of w2r+1 be

defined entry-wise by:

[Mr(w)]α,β = wα+β, (6.50)
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where α, β ∈ Nr. Let h1(x) = x − λn(AI) and h2(x) = x + λn(AI); hence, we have

that [−λn(AI), λn(AI)] = {x ∈ R : h1(x) ≥ 0, h2(x) ≥ 0}. Next, we define the localizing

matrices with respect to h1 and h2 by

[Lr(h1,w)]α,β = λn(AI)wα+β − wα+β+1, (6.51)

and

[Lr(h2,w)]α,β = λn(AI)wα+β + wα+β+1. (6.52)

Since the support of ν̃AI is contained in [−λn(AI), λn(AI)], both Lr(h1,w) and Lr(h,w)

must be positive semidefinite.

Subsequently, for ρ = λn(AI), the moment sequence w2r+1 = {wγ}γ≤2r+1 of the auxil-

iary spectral measure ν̃AI must satisfy (6.49). Furthermore, the moment and localizing

matrices defined in (6.50)–(6.52) must be positive semidefinite (by replacing λn(AI)

with the parameter ρ). Next, we aim to find the maximum value of the parameter ρ

such that all the constraints above are satisfied.

Theorem 25. Let A be the adjacency matrix of a digraph G, and define AI = j(A−A>).

Let r be an arbitrary positive integer and d = 2r + 1. Denote by ω?r the solution to the

following semidefinite program:

maximize
ρ,w2r+1

ρ

subject to (6.49),

Mr(w) � 0, Lr(g1,w) � 0, Lr(g2,w) � 0,

(6.53)

where Mr(w) and Lr(gi,w) are defined in (6.50)–(6.52). Then, ω?r
2 ≥ ωmax for all r ∈ N.

Furthermore, ω?r is a non-increasing function of r ∈ N.

Proof. See Appendix A.5.

Note that, as described in Subsection 6.3.1, the values of Tr(A`I) in (6.49) can be com-

puted using counts of subgraphs of G. Hence, we have that w?r can be obtained using
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counts of subgraphs solely, providing an upper bound on the maximum imaginary part

in the spectrum of A.

Corollary 4. Let A be the adjacency matrix of a digraph G. Given a positive integer

r ∈ N, let w?r be the optimal solution to (6.53). If A = A>, then w?r = 0 for all positive

integers r ∈ N.

Proof. When A = A>, Tr(AγI ) = 0 for all γ ∈ N. Therefore, from (6.60), given an

even integer γ ∈ N, we have that (n − 2)wγ = −2ργ (by replacing λn(AI) with the

optimization parameter ρ). Since Mr(w) is positive semidefinite, all its diagonal entries

are non-negative. As a consequence, ρ must equal to zero. Therefore, w?r = 0.

The above corollary shows that the upper bound on ωmax(A) is tight when A is a

symmetric matrix. Consequently, the refined framework can also be used to obtain

tight bounds for undirected graphs.

6.3.3 Refined Bounds on the Spectral Radius

In Section III, we have considered that the spectrum of A is contained in the square

S = [−λn, λn]2. However, more precisely, spec(A) is contained in a rectangle Ŝ =

[−λn, λn] × [−ωmax, ωmax]. Consequently, we define the polynomials ĝ3(x) = ωmax − x2

and ĝ4(x) = ωmax + x2. As required by Corollary 3, the localizing matrices of y2,d with

respect to ĝ3 and ĝ4 must be positive semidefinite. In other words, we impose additional

constraints on the feasible sets in the optimization problems (6.24) and (6.39). This

procedure is summarized in Algorithm 8.

Consequently, we have utilized counts of different subgraphs to provide upper and lower

bounds on the spectral radius. In general, ωmax(A) is much smaller than ρ(A). Thus,

the obtained solution from Algorithm 1 achieves better performance than the approach

in Section 6.2. Notice that, not all subgraphs are needed to compute Tr(A`I) and Tr(A`).

For example, when we consider using subgraphs of order less or equal to 5, we only need

the counts of those subgraphs depicted in Figure 6-4.
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6.3.4 Upper Bound on λn

We have proposed a framework to provide a more accurate estimate on the spectral

radius of A using the relation between the imaginary parts of A and A−A>. Similarly,

we can also consider how the eigenvalues of AR = A+A> are related to the eigenvalues

of A. More specifically, the relationship

λn ≤
1

2
max{v∗ARv : v∗v = 1,v ∈ Cn} = λn(AR). (6.56)

where λn(AR) is the largest eigenvalue of AR. In particular, the equality holds if and

only if A is a normal matrix. As shown previously, an upper bound on λn(AR) can be

obtained by relating the counts of a subsets of subgraphs in A to the spectral moments of

A+A>. Therefore, this bound is also an upper bound for λn due to (6.56). Subsequently,

we can also provide an upper bound on λn by providing an upper bound on λn(AR)

using counts of subgraphs in G.

To characterize the upper bound on the spectral radius of AR, we follow the idea pre-

sented in the previous subsection. Given AR, we define the spectral measure of AR as

the following one-dimensional probability density:

νAR(x) =
1

n

n∑
i=1

δ(x− λi(AR)). (6.57)

We also define the (n− 1)-atomic auxiliary spectral measure ν̃AR by

ν̃AR(x) =
1

n− 1

n−1∑
i=1

δ(x− λi(AR)). (6.58)

From the definitions of νAR and ν̃AR , we compute the r-th moment of ν̃AR , denoted by

m̃r(AR), as follows:

m̃r(AR) =

∫
x∈R

xkdν̃AR ,

=
1

n− 1
[Tr(ArR)− λn(AR)r] .

(6.59)

As illustrated in (6.44), as well as Theorem 2, Tr(ArR) can be computed using counts of
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certain subgraphs in G. As a consequence, m̃r(AR) can also be computed as a linear

combination of the counts of certain subgraphs in G. To find an upper bound on λn(AR),

we provide below necessary conditions that must be satisfied by all moment sequences

of ν̃AR , denoted by p2r+1.

According to (6.59), in order for p2r+1 to be a potential moment sequence of the density

ν̃AR , we must have:

pγ =
1

n− 1

[
Tr(AγR)− λn(AR)γ

]
, (6.60)

for all γ ≤ 2r + 1. Moreover, the moment matrix of p2r+1, defined entry-wise by

[Mr(p)]α,β = pα+β, (6.61)

for α, β ∈ Nr, must be positive semidefinite. Since A ∈ {0, 1}n×n, the matrix AR =

A + A> is entry-wise non-negative. It further follows that the largest eigenvalue of

AR is non-negative, according to Perron-Frobenius theory. Subsequently, we have that

spec(AR) ⊆ [−λn(AR), λn(AR)]. Let us define the polynomials φ1(x) = λn(AR)−x and

φ2(x) = λn(AR) + x; hence, we have that spec(AR) ⊆ {x ∈ R : φ1(x) ≥ 0, φ2(x) ≥ 0}.

Next, we define the localizing matrices with respect to φ1 and φ2 as

[Lr(φ1,p)]α,β = λn(AR)pα+β − pα+β+1, (6.62)

[Lr(φ2,p)]α,β = λn(AR)pα+β + pα+β+1, (6.63)

for α, β ∈ Nr. Then, Corollary 3 indicates that Lr(φ1,p) and Lr(φ2,p) must be positive

semidefinite for the sequence p2r+1 to be a potential moment sequence of the density

ν̃AR .

Consequently, for ρ = λn(AR), the moment sequence p2r+1 of the auxiliary measure

ν̃AR must satisfy the above constraints. The upper bound on λn(AR) can thus be found

by maximizing the parameter ρ subjected to the above constraints, as shown in the

following theorem.

Theorem 26. Let A be the adjacency matrix of a digraph G, and define AR = A+A>.
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Let r be an arbitrary positive integer and d = 2r + 1. Denote by p?r the optimal solution

to the following semidefinite program:

maximize
ρ,pd

ρ

subject to (6.60),

Mr(p) � 0,

Lr(φ1,p) � 0, Lr(φ2,p) � 0,

(6.64)

where Mr(p), Lr(φ1,p) and Lr(φ2,p) are defined in (6.61)–(6.63). Then, p?r
2 ≥ λn for

all r ∈ N. Furthermore, p?r is a non-increasing function of r ∈ N.

Proof. See Appendix A.5.

Since Tr(A`R) can be computed using counts of subgraphs of G, we have that p?r can be

obtained via counts of subgraphs of A.

6.4 Empirical Results

In this section, we empirically demonstrate the validity of our bounds on random di-

graphs (Subsection 6.4.1) and on real networks (Subsection 6.4.2).

6.4.1 Random Directed Graphs

We generate random directed graphs according to the directed version of the Chung-

Lu model [172]. More specifically, given a positive integer n, we consider two se-

quences win = [win1 , w
in
2 , . . . , w

in
n ]> and wout = [wout1 , wout2 , . . . , woutn ]>, representing the

in-degrees and out-degrees of each vertex. Furthermore, we let
∑n

i=1w
in
i =

∑n
i=1w

out
i =

m. Then, according to [172], the entries in A are given by

Aij =


1, w.p.

wini w
out
j

m ,

0, otherwise.

(6.65)
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Using this model, we can also generate Erdős-Renyi random digraphs by letting win =

wout = [pn, . . . , pn]> for a prescribed value p ∈ (0, 1). As an example, we consider the

following parameters in our experiment: n = 500 and p = logn
n ≈ 0.0124. Using these

parameters, we generate a numerical realization of the random digraph A. The spectral

radius of A equals λn ≈ 6.3002, whereas the ωmax ≈ 2.6373. From Theorem 7, when

r = 2, we have that ρ?r = 6.7806.

In addition to Erdős-Renyi random digraph, we can specify win and wout to generate

random graphs power-law degree distributions. As shown in [173], given c, β, i0 ∈ R,

we can define the sequence wi = c(i0 + i)
− 1
β−1 , to generate a random undirected graph

whose degrees follow a power-law distribution with exponent β, i.e., the number of

vertices with degree k is proportional to k−β. In particular, it is possible to ‘control’

the maximum degree, denoted by ∆, and average degree, denoted by d, by using the

following parameter selection:

c =
β − 2

β − 1
dn

1
β−1 , and i0 = n

(
d(β − 2)

∆(β − 2)

)β−1

. (6.66)

In our experiment, we generate a sequence w using the above method and let win =

wout = w. In addition, we consider the following parameters: n = 1500, β = 5, d = 40

and ∆ = 120. Subsequently, from a random digraph realization, we have that λn ≈

42.8770, while ωmax ≈ 6.3868. In Figure 6-5-(a), we show the histogram of in-degrees for

the particular random digraph realization under consideration, while in Figure 6-5-(b),

we show the evolution of the upper and lower bounds proposed in this paper as the

order of the subgraph counts used increases. For example, the outputs of Algorithm 8

using counts of subgraphs of order up to 6 are an upper bound of 42.8777 and a lower

bound of 42.8763, which are very tight in this case. Next, we explore our framework on

real artificial directed graphs.
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6.4.2 Real-world Directed Graphs

We consider several real digraphs obtained from [171] and [174]. In our first example, we

examine the directed graph representing flights between U.S. airports in 2010 containing

1,574 vertices and 28,236 edges. In this digraph, each directed edge represents a flight

connection from one airport to another. In our experiment, we preserve connectivity

of the digraph and remove the edge weights. The spectral radius of the resulting (un-

weighted) digraph equals λn = 99.1175, whereas ωmax = 2.881. We plot the eigenvalue

spectrum of A in Figure 6-6. Using the moment framework described in Section 3, we

obtain that our unrefined bounds are ρ?
2

= 47.1184 and ρ?2 = 172.2931, when the counts

of subgraphs of order up to 5 are considered. To improve these bounds, we first find an

upper bound on ωmax. Using Algorithm 8, for r = 2, we obtained that ω?r/2 ≈ 8.2776,

which is an upper bound on ωmax(A) = 2.881. With the help on this additional informa-

tion, we obtained that the refined lower bound and upper bound on the spectral radius

equal 99.1167 and 102.9278, respectively.

In Tables 6.1 and 6.2, we illustrate the performance of our framework using other real-

world directed graphs. In these experiments, we fix r = 3 and compare the performance

of our bounds, with and without the refinement described in Subsection 6.3.3. As pre-

viously indicated, the refined bounds are guaranteed to be no worse than the bounds

obtained without estimating the largest imaginary part. Moreover, as r increases, the

difference between the estimates using the two proposed methods diminishes, as illus-

trated in Table 6.1 and Table 6.2. However, the convergence rate of our algorithm

depends on the structure of the digraph. For example, we observe that using r = 3, the

lower bound returned by Algorithm 8 equals ρ?
3

computed using Theorem 24 when we

are considering the social network with n = 627 vertices.
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Type Size λn ωmax ρ?
3

%?
3

Social 131 18.3488 1.2132 8.0349 8.4347

Social 168 21.8484 0.8023 9.6100 13.5492

Social 344 21.6719 1.26 10.7704 21.6712

Social 627 10.4766 1.2995 5.2389 5.2389

Airport 1574 99.1175 2.881 99.1167 99.1167

Wikipedia 8297 47.9430 8.4824 29.9651 29.9651

Table 6.1: This table shows lower bound on the spectral radius of various networks
computed using Theorem 23 (fifth column) and Algorithm 8 (last column).

Type Size ρ?3 p?3 %?3

Social 131 22.2728 22.5450 20.7786

Social 168 35.9181 22.5630 24.9591

Social 344 24.7768 29.6324 24.7768

Social 627 12.8224 18.9572 12.3289

Airport 1574 99.1183 99.2906 99.1183

Wikipedia 8297 50.3321 49.0404 47.9438

Table 6.2: This table shows upper bounds computed using Theorem 24 (column 2,
denoted by ρ?3), Theorem 26 (column 3, denoted by p?3), and Algorithm 8 (last column),
respectively.
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Algorithm 8: Refined upper and lower bounds of λn

Input: Positive integer r ∈ N, and {Tr(A`I),Tr(A`)}2r+1
l=1

Output: Lower bound and upper bound on the spectral radius of G, denoted
by %?

r
and %?r , respectively.

1: Let d = 2r + 1.
2: Solve (6.53) and obtain w?r .
3: Define matrices Lr(ĝ3) and Lr(ĝ4) entry-wise by:

[Lr(ĝ3)]αβ = w?ryα+β − yα+β+[0,1]> , and

[Lr(ĝ4)]αβ = w?ryα+β + yα+β+[0,1]> .

4: Define matrices L̃r(ĝ3) and L̃r(ĝ4) entry-wise by

[L̃r(ĝ3)]αβ = w?rzα+β − zα+β+[0,1]> , and

[L̃r(ĝ4)]αβ = w?rzα+β + zα+β+[0,1]> .

5: Compute %?
r

via

%?
r

= arg min
ρ,y2,d

ρ

subject to (6.15)–(6.17),

Mr � 0,

Lr(gi) � 0, for i ∈ [4]

Lr(ĝ3) � 0, Lr(ĝ4) � 0.

(6.54)

6: Obtain %?r via:
%?r = arg max

ρ,z2,d

ρ

subject to (6.30)–(6.33),

M̃r � 0,

L̃r(gi) � 0, for i ∈ [4],

L̃r(ĝ3) � 0, L̃r(ĝ4) � 0.

(6.55)
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Figure 6-4: This figure shows those subgraphs whose counts are needed for estimating
the spectral radius of A using Algorithm 1 with r = 2 (i.e., d = 5).
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Figure 6-5: In (a), we show the histogram of in-degrees of one realization of the Chung-
Lu random digraph. In (b), we show the normalized lower (in blue) and upper bounds,
where the red and green lines show the upper bound obtained using Theorem 5 and
Algorithm 1, respectively.
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Figure 6-6: This figure shows the eigenvalue spectrum of the digraph representing flights
between airports in the U.S. The x-axis and y-axis are the real and imaginary parts of
the eigenvalues of A, respectively.
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Chapter 7

Moment-closure Analysis and

Control of Spreading Processes

As illustrated in the previous chapter, we can the leverage connection between the

multidimensional moment problem and semidefinite programming to characterize global

property of a directed graph. In this chapter, we further exploit this connection to

analyze networked stochastic spreading processes.

The rest of the paper is organized as follows. In Section 7.1, we provide preliminaries

and a description of the nonhomogeneous SIS spreading process, as well as additional

background on the multidimensional moment problem. The proposed moment-closure

framework is introduced in Section 7.2, where we focus our attention on the networked

SIS model. In Section 7.3, we discuss how to apply this moment-closure technique to

both the SI and the SIR epidemic models. In Section 7.4, we illustrate the performance

of our framework by numerically analyzing several spreading processes taking place over

a real-world social network. In Section 7.5, we analyze the spread of multiple diseases in

a multilayer contact network and design efficient methodologies to contain all diseases

simultaneously.
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S I

Node 𝑖
𝛽𝑖𝑗𝑌𝑖𝑗

𝛿𝑖

Figure 7-1: Illustration of the SIS spreading model on a directed graph. In the left
subfigure, the black arrows represent the edges in the digraph, whereas the red and blue
circles represent the infected and susceptible nodes, respectively. In the right subfigure,
we show the possible transitions between states of a node i. The variable Yij represents
the event that an in-neighbor j of i is infected.

7.1 Networked SIS Spreading Model and the K-moment

Problem

In this section, we introduce notions related to networked epidemic models and multidi-

mensional moment problem. Throughout this chapter, we adopt standard notions from

graph theory (see Section 2.1.2 in Chapter 2).

7.1.1 Heterogeneous Networked SIS Spreading Model

We first describe the Susceptible-Infected-Susceptible (SIS) model, which is commonly

used to characterize epidemics over networked populations. In the coming sections,

we introduce a novel technique to analyze the stochastic dynamics of this, and other,

epidemic models. For clarity in our exposition, we first illustrate the proposed technique

using the SIS epidemic model; we then extend our analysis to other models, such as the

SI and SIR models, in Section 7.3.

Next, we describe the continuous-time heterogeneous SIS spreading model on the graph

G, [127]. In this model, at a given time t ≥ 0, each node can be in one of the following

two states: (i) ‘Susceptible’, representing the case of a healthy node, and (ii) ‘Infected ’,

in which the node is infected by a disease propagating through the network. On one

hand, whenever node i is in the Susceptible state, i can be infected by one of its infected

in-neighbour j ∈ N−i according to a Poisson process with parameter βij > 0, called the

123



infection rate of edge (j, i). On the other hand, if node i is in the Infected state at

a given time t, it cures itself according to a Poisson process with parameter δi, called

the recovery rate of node i. We use a binary variable xi(t) ∈ {0, 1} to represent the

state of node i ∈ V at time t ≥ 0. More specifically, xi(t) = 0 if node i is Susceptible,

and xi(t) = 1 if it is Infected at time t ≥ 0. We illustrate the SIS spreading model in

Figure 7-1.

The exact evolution of the random variables xi(t) can be characterized by a continuous-

time Markov process with the following transition probabilities:

P (xi(t+ h) = 1 | xi(t) = 0) =
∑
j∈N−i

βijxj(t)h+ o(h),

P (xi(t+ h) = 0 | xi(t) = 1) = δih+ o(h).

(7.1)

Notice that the dimension of the state space of the Markov process in (7.1) is 2n; hence,

an exact analysis of the stochastic process is computationally challenging when the size

of the underlying network is large. In what follows, we are interested in analyzing the

dynamics of the probability of a node i ∈ V being infected at time t, i.e., P(xi(t) =

1) = E[xi(t)]. As illustrated in [84], the governing equations for the evolution of the

expectation of xi(t) is given by1

d

dt
E [xi] = −δiE [xi] +

∑
j∈N−i

βijE [xj ]−
∑
j∈N−i

βijE [xixj ] . (7.2)

We refer to (7.2) as the mean SIS dynamics of node i. In order to solve (7.2), it is

necessary to characterize the second-order moment E[xixj ] for all j ∈ N−i . However,

as shown in [135], the evolution of E[xixj ] depends on third-order moments of the form

E[xixjxk], which in turn, forces us to characterize E[xixjxk]. More generally, one can

prove that, in order to characterize the evolution of a k-th order moment, one needs to

characterize the time derivatives of moments of order k+ 1. As a result of this recursive

dependency, the evolution of the mean SIS dynamics is fully characterized by 2n ordinary

1Whenever clear from the context, we shall remove the time-dependent notation from the random
variable xi(t).
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differential equations.

In order to obtain a computationally tractable approximation of the mean SIS dynamics,

it is common to use moment-closure techniques in which one approximates k-th order

moments using lower-order moments (see for example [135]). In particular, the mean-

field approximation (MFA) is a widely adopted moment-closure technique in which one

assumes that E[xixj ] = E[xi]E[xj ]. Hence, defining the moment variable µi = E[xi],

(7.2) turns into the following system of n non-linear differential equations:

µ̇i = −δiµi +
∑
j∈N−i

βijµj −
∑
j∈N−i

βijµiµj . (7.3)

Nonetheless, using this approximation, we do not have any quality guarantee about

whether µi(t) is an upper or lower bound of the expectation E[xi(t)].

In this paper, we develop a systematic framework to perform moment-closure with qual-

ity guarantees by using recent results on the K-moment problem [108]. The proposed

framework is capable of providing both upper and lower bounds on the mean SIS spread-

ing process. In the next subsection, we provide necessary background on the K-moment

problem. We use the SIS model as a running example to illustrate the proposed tech-

nique. In Section 7.3, we will extend this technique to analyze other epidemic models,

such as the networked SI and SIR models.

7.1.2 The K-moment Problem

To explain our approach, we recall the following concepts from the theory behind the

K-moment problem (see Section 6.2.3 in Chapter 6 for more details). As noted by

Theorem 22, a necessary and sufficient condition for the feasibility of the K-moment

problem, restricted to the case when K is semi-algebraic and compact, can be stated in

terms of linear matrix inequalities involving moment matrices and localizing matrices

(see Definition 21 and Definition 22). We recall these two important notions here to ease

the readability. In order to define these matrices, we introduce the following notions.
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Given an integer r ∈ N, we define the vector

vr(x) :=
[
1, x1, . . . , xn, x

2
1, x1x2, . . . , x

r
1, . . . , x

r
n

]>
, (7.4)

i.e., the vector containing the monomials of the canonical basis of real-valued polynomi-

als of degree at most r. Furthermore, given an integer vector α = [α1, . . . , αn]> ∈ Nnr ,

we define [vr]α = xα.

Definition 21. Given an Rn-valued random variable x, the moment matrix of x of

order 2r is defined as Mr = E[vr(x)vr(x)>].

Let y = {yα}|α|≤2r be a finite multi-sequence such that yα = E [xα] for all |α| ≤ 2r.

Then, we can index the entries of the moment matrix Mr using two elements of Nnr as

follows. Given two elements α,β ∈ Nnr , the (α,β)-th entry of Mr, denoted by [Mr]α,β,

is equal to E[[vr]α[vr]β] = E[xαxβ] = yα+β.

Similarly, we define the localizing matrices as follows.

Definition 22. Given an Rn-valued random variable x, and a polynomial g : Rn → R,

we define the localizing matrix of x with respect to g as Lr(g) = E
[
g(x)vr(x)vr(x)>

]
.

Let deg(g) be the degree of the polynomial g. Then, g can be written as

g(x) =
∑

γ∈Nn
deg(g)

cγxγ ,

where xγ is a monomial (i.e., an entry in vdeg(g)(x)) and cγ is its corresponding coef-

ficient. Let y = {yα}|α|≤2r+deg(g) be the multi-sequence of moments such that yα =

E [xα] for all α ∈ Nn2r+deg(g). Hence, the entries of the localizing matrix can be in-

dexed using two entries of Nnr+deg(g), as follows. Given two elements α,β ∈ Nnr ,

the (α,β)-th entry of Lr(g), denoted by [Lr(g)]α,β, is equal to E[g(x)[vr]α[vr]β] =

E
[∑

γ∈Nn
deg(g)

cγxγxαxβ
]

=
∑

γ∈Nn
deg(g)

cγyα+β+γ . In Chapter 6, we have stated a con-

dition for a finite multi-sequence to be K-feasible for a compact and semi-algebraic set

K (see Theorem 22). In this section, we state an anlogous necessary and sufficient con-

dition for the K-feasibility of an infinite multi-sequence. Before stating this theorem,
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we first need to define the following notion [108].

Definition 23. A polynomial p : Rn → R is a sum-of-squares (SOS) if p can be written

as

p(x) =
J∑
j=1

pj(x)2, (7.5)

for some finite set of polynomials {pj : j ∈ [J ]}.

A necessary and sufficient condition for an infinite multi-sequence y = {yα}α∈Nn to

be K-feasible, restricted to the case when K is both compact and semi-algebraic, is as

follows.

Theorem 27. (Putinar’s Positivstellensatz, [175]) Consider an infinite multi-sequence

y = {yα}α∈Nn, and a collection of polynomials gi : Rn → R, for all i ∈ [m]. Define a

compact semi-algebraic set K = {x ∈ Rn : gi(x) ≥ 0, i ∈ [m]} . Assume that there exists

a polynomial u = u0 +
∑m

i=1 uigi, where ui are SOS polynomials for all i ∈ [m], such

that the set {x : u(x) ≥ 0} is compact. Then, the multi-sequence y has a K-representing

measure, if and only if,

Mr(y) � 0, and

Lr(gjy) � 0, for all j ∈ [m], and r ∈ N.
(7.6)

Remark 16. Theorem 22 in Chapter 6 and Theorem 27 stated necessary and sufficient

conditions for a finite and an infinite multi-sequence to be K-feasible, respectively.

Remark 17. Using (7.6) to verify the K-feasibility of a given multi-sequence requires

checking the positive semi-definiteness of m+ 1 matrices for each r ∈ N. Moreover, the

dimension of these matrices grows with r.

Based on Theorem 27, one can verify whether a given multi-sequence is a K-feasible

moment sequence by solving an infinite sequence of semi-definite programs. On the other

hand, given a finite moment sequence, up to a certain order, one can use Theorem 27

to derive conditions on higher-order moments for the multi-sequence of moments to be

feasible. In the next section, we use this idea to provide upper and lower bounds on the

evolution of E[xi], described in (7.2).
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7.2 SDP-based Moment-closure

In this section, we first characterize the dynamics of the α-moment of the random vector

describing the state of the SIS model, for an arbitrary α ∈ Nk (Subsection 7.2.1). Then,

we show that the problem of obtaining upper and lower bounds on the evolution of

the α-moment is closely related to the K-moment problem (Subsection 7.2.2). Finally,

we obtain a closed-form expression for the mean dynamics of the SIS spreading process

(Subsection 7.2.3). In Section 7.3, we will extend our results to other networked epidemic

models, such as the SI and SIR models.

7.2.1 Dynamics of the α-moment in the SIS Spreading Process

As discussed in Subsection 7.1.1, in order to close the system of differential equations

describing the mean SIS dynamics (7.2), it is necessary to characterize the dynamics of

second-order moments E[xixj ] for all (i, j) ∈ E . More generally, in order to characterize

the mean dynamics of any k-th order moment of the form E[xi1 · · ·xik ], we need to

obtain an expression for the (k+ 1)-th order differential dxi1 · · ·xik+1
. To undertake the

problem of finding a closed system of differential equations to describe the mean SIS

spreading process, we propose the following three-step approach: First, we describe the

stochastic dynamics of the networked SIS process using jump processes [176]. Second,

we use Ito’s formula for jump processes to obtain a governing equation for high-order

differentials, i.e., an expression for dxi1 · · ·xik for arbitrary k. Finally, we derive explicit

differential equations allowing us to upper and lower bound the dynamics of any k-th

order moment of the SIS spreading process. To achieve our goals, we first introduce

related notions on Poisson jump processes.

Definition 24. [176] Given γ > 0, a stochastic process P γt is called a Poisson jump

process with rate γ if: (i) for every s, t > 0, the random variable P γs+t−P
γ
s is independent

of {P γt′ : t′ ≤ s} and follows the same distribution as P γt − P
γ
0 , and (ii) the random

variable P γt − P
γ
0 follows a the Poisson distribution with mean γt, i.e., P(P γt − P

γ
0 =

k) = eγt (γt)k

k! .
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In what follows, we abbreviate P γt as Pγ for convenience. Using Poisson jump processes,

the evolution of the states xi(t) in the SIS spreading process described in (7.1) can be

characterized by the following set of stochastic differential equations:

dxi = −xidPδi + (1− xi)
∑
j∈N−i

xjdPβij , (7.7)

with xi(0) ∈ {0, 1} for all i ∈ V. Notice that, we can recover the first-order mean

dynamics of the SIS spreading process in (7.2) by taking expectation of (7.7). In order

to obtain the dynamics of the second-order differential dxixj , we use Ito’s formula for

jump processes, as stated below:

Theorem 28. [176] Let x(t) be an Rn-valued random variable for all t > 0, and φ :

Rn → R be a twice continuously-differentiable function. If

dx(t) =

np∑
k=1

hk(x)dPγk , (7.8)

where hk : Rn → Rn, for all k ∈ [np], then

dφ(x) =

np∑
k=1

[φ(x + hk(x))− φ(x)] dPγk . (7.9)

As an example, we let φ(x) = xixj , and apply Theorem 28 on (7.7). Subsequently, after

tedious (but simple) algebraic manipulations, we obtain

dxixj = −xixj(dPδi + dPδj ) + (1− xi)xj
∑
k∈N−i

xkdPβik

+ (1− xj)xi
∑
k∈N−j

xkdPβjk .

(7.10)

If the SIS spreading process is homogeneous, i.e., δi = δ for all i ∈ [n] and βij = β for
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all (i, j) ∈ E , then taking the expectation of (7.10) results in:

dE[xixj ]

dt
= −2δE[xixj ]− β

n∑
k=1

(ajk + aik)E[xixjxk]

+ β

 ∑
k∈N−i

E[xixk] +
∑
k∈N−j

E[xjxk]

 ,
which reduces to the result in [135]. More generally, we can use (7.9) to derive explicit

expressions of higher-order differentials, i.e., dxα1
1 xα2

2 · · ·xαnn for arbitrary α1, . . . , αn ∈

N, for the SIS spreading model, as stated in the following theorem.

Theorem 29. Given a collection of k integers i1, . . . , ik ∈ [n] and a vector of positive

integers α ∈ Nk, we define the following monomials φα(x) = xα1
i1
· · ·xαkik , φ

−s
α (x) =

xα1
i1
· · ·xαs−1

is−1
x
αs+1

is+1
· · ·xαkik , and φ1(x) = xi1 · · ·xik . Consider a directed graph G = (V, E),

and the set of stochastic differential equations described in (7.7). Then, the evolution of

the α-moment satisfies

dE[φα(x)]

dt
= −

k∑
s=1

δisE[φ1(x)]

+
k∑
s=1

∑
`∈N−is

βis`
(
E[φ−s1 (x)x`]− E[φ1(x)x`]

)
.

(7.11)

Proof. See Appendix A.6.

This theorem shows that the time derivative of the α-moment E[φα(x)] depends on

E[φ1(x)x`], which is a moment of higher order. In order to close the differential equation

in (7.11), we propose to approximate E[φ1(x)x`] using E[φα(x)] for |α| ≤ k. In the next

section, we achieve this goal by upper and lower bound the term E[φ1(x)x`].

7.2.2 SDP-based Moment Closure

In this subsection, we will develop a framework to obtain both upper and lower bounds

on the dynamics of the α-moment, E[φα]. In this direction, we will bound the higher-

order term E[φ1(x)x`] using lower-order moments E[φβ(x)] for |β| ≤ k. For example, the
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widely used mean-field approximation [135] is an approach to close the first-order mean-

dynamics E[xi] by approximating the second-order term E[xixj ] using the following

product of two first-order terms E[xi]E[xj ].

In what follows, we develop a framework to find two systems of differential equations

whose solutions are guaranteed to upper and lower bound the dynamics of any α-

moment. Our approach utilizes Putinar’s Positivstellensatz to derive bounds on an

α-moment in terms of lower-order moments. Before we present this approach, we first

introduce several definitions. Given a set I ⊆ [n], we define µI = E[Πi∈Ixi]. Further-

more, given a set of k distinct indices Ik = {i1, . . . , ik} ⊆ [n], we define the (finite)

multi-sequence of moments y(Ik) = {E [Πs∈Sxs]}S⊆Ik,|S|<k.

In what follows, we bound the moment E[φα] = µIk using lower-order moments con-

tained in the set y(Ik). To achieve this goal, we notice that at each time t > 0, x(t) is

a {0, 1}n-valued random variable. Subsequently, for a given time t, [xi1(t), . . . , xik(t)]>

follows a distribution supported on {0, 1}k. In particular, the α-moment of the random

vector [xi1(t), . . . , xik(t)]> for α = 1k is equal to µIk . Therefore, the sequence of mo-

ments ŷ(Ik) = y(Ik) ∪ {µIk} must be {0, 1}k-feasible. Consequently, an upper bound

(respectively, lower bound) on µIk can be obtained by finding the largest (respectively,

smallest) value of µIk such that ŷ(Ik) is {0, 1}k-feasible.

To achieve the above objective, we propose to exploit the semidefinite inequalities in

Theorem 27, regarding the moment and localizing matrices of y(Ik). However, (7.6)

provides conditions for an infinite sequence to be K-feasible whereas the sequence y(Ik)

is finite. To circumvent this issue, we will extend the finite multi-sequence of moments

y(Ik) into an infinite sequence such that the results in Theorem 27 are applicable. As

we discuss below, this extension is possible due to the binary nature of the random

variables xi. More specifically, although y(Ik) contains a finite sequence of moments,

we can extend this sequence using the following observation: Given a set of q disjoint

indices {i1, . . . , iq} ⊆ [n], since xi are binary random variables, we have that:

E[Πq
s=1xis ] = E[Πq

s=1x
αs
is

], (7.12)
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for all q ≤ k, where αs > 0 for all s ∈ [q]. Subsequently, y(Ik) can be extended

uniquely into an infinite sequence, as follows: Given ŷ(Ik), we construct its associated

infinite extension as y∞(Ik) = {yα}α∈Nk , with yα satisfying (7.12). Consequently,

given a compact semi-algebraic set K, the K-feasibility of y(Ik) is equivalent to the

K-feasibility of y∞(Ik) = {yα}α∈Nk .

Secondly, in order to apply Theorem 27, we show below (in Lemma 15) that the infinite-

dimensional matrices in (7.6) are positive semidefinite, if and only if, certain finite-

dimensional matrices are positive semidefinite. Before rigorously stating this claim, we

need to introduce several additional notions. Given k ≤ n, we let κ = dk/2e, and

Nk =
(
k+κ
k

)
. Finally, given s ∈ [k], we let es denote the s-th standard basis vector of Rk.

With the help of these notions, we define the following finite-dimensional matrices. Let

Mκ(ŷ(Ik)) ∈ RNk×Nk be defined entry-wise by

[Mκ(ŷ(Ik))]α,β = yα+β, (7.13)

for all α,β ∈ Nkκ. Essentially, if yγ = E[xγ ] for all γ ∈ Nk, then Mκ is the principal

sub-matrix of size Nk of the infinite moment matrix in Theorem 27. In addition to

Mκ, we now construct a collection of finite-dimensional matrices to replace the infinite-

dimensional localizing matrices in Theorem 27. To achieve this goal, we first notice that

the measure of the random vector [xi1 , . . . , xik ]> is supported on S̃k = [0, 1]k ⊃ {0, 1}k,

which is both compact and semi-algebraic. By defining g1
s(x) = 1− xis and g0

s(x) = xis

for all s ∈ [k], the hypercube S̃k can be represented as

S̃k = {x ∈ Rk : g1
s(x) ≥ 0, g0

s(x) ≥ 0,∀s ∈ [k]}. (7.14)

Next, for each s ∈ [k], we define two matrices [L1
κ(ŷ(Ik), s)] and [L0

κ(ŷ(Ik), s)], as follows:

[L1
κ(ŷ(Ik), s)]α,β = yα+β − yα+β+es , (7.15)
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and

[L0
κ(ŷ(Ik), s)]α,β = yα+β+es . (7.16)

As we will prove in Lemma 15, the matrices in (7.15) and (7.16) can be used as finite-

dimensional localizing matrices for g1
s(x) and g0

s(x), respectively.

Remark 18. From (7.12), we see that whenever yα+β = yα+β+es, the corresponding

entry in (7.15) is zero. More specifically, given an integer vector α ∈ Nk, we define

A = {i : [α]i 6= 0} and B = {i : [β]i 6= 0}. Consequently, [L1
κ(ŷ(Ik), s)]α,β = 0, if and

only if,

A ∪ B = A ∪ B ∪ {is}. (7.17)

Next, we show that the positive semidefiniteness of the infinite-dimensional matrices

in Theorem 27 is equivalent to the positive semidefiniteness of the finite-dimensional

matrices in (7.13), (7.15), and (7.16).

Lemma 15. Let {xis}s∈[k] be a collection of binary random variables such that ŷ(Ik) =

{E [Πs∈Sxs]}S⊆Ik , and denote its associated infinite extension by y∞(Ik). Then, the

sequence y∞(Ik) is S̃k-feasible, if and only if,

Mκ(ŷ(Ik)) � 0, and

L1
κ(ŷ(Ik), s) � 0, L0

κ(ŷ(Ik), s) � 0,∀s ∈ [k].

(7.18)

Proof. See Appendix A.6.

Remark 19. From (7.13), (7.15), and (7.16), we have that Mκ(ŷ(Ik)) = L1
κ(ŷ(Ik), s)+

L0
κ(ŷ(Ik), s). Subsequently, positive semidefiniteness of L1

κ(ŷ(Ik), s) and L0
κ(ŷ(Ik), s)

implies that Mκ(ŷ(Ik)) � 0.

Based on the above lemma, we can derive upper and lower bounds on the moment

E[φ1(x)x`] = µIk∪{`} in (7.11) by solving, respectively, the following semidefinite pro-

grams:

µIk∪{`} = max
µIk∪{`}

µIk∪{`} s.t. (7.18) holds. (7.19)
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µIk∪{`}
= min
µIk∪{`}

µIk∪{`} s.t. (7.18) holds. (7.20)

Hence, given a set Ik, we have that µIk∪{`} ∈ [µIk∪{`}
, µIk∪{`}]. Based on this, one could

be tempted to obtain an upper (respectively, a lower) bound on the evolution of E[φα]

by solving the ODE in (7.11) after replacing the higher-order term E[φ1(x)x`] by µIk∪{`}

(respectively, µIk∪{`}). However, this is not true, since a monotone relationship between

derivatives does not preserve the monotonicity between the solutions of the ODEs, as

discussed in [177].

To address this issue, we propose to make slight modifications on the entries of the local-

izing matrices to invoke a multidimensional version of Grönwall’s comparison lemma [177].

More specifically, for a given set J ⊆ Ik, let µ̂J and µ̌J be upper and lower bounds

on the moment µJ , i.e., µJ ∈ [µ̌J , µ̂J ]. For a given γ ∈ Nkκ, let us define J = {i ∈

[n] : [γ]i 6= 0}, as well as ŷγ = µ̂J and y̌γ = µ̌J . Let us also define the following

modifications on the localizing matrices described in (7.15) and (7.16):

[L̃1
κ(ŷ(Ik), s)]α,β =


0, if (7.17) holds,

ŷα+β − y̌α+β+es , otherwise.

, (7.21)

and

[L̃0
κ(y(Ik), s)]α,β = ŷα+β+es . (7.22)

In the next theorem, we formally show how to obtain upper and lower bounds on the

evolution of E[φα] using a modification of the ODE in (7.11) involving (7.21) and (7.22).

Theorem 30. Given a directed graph G = (V, E), let us define a sequence of functions

{µ̂I(t), µ̌I(t)}I⊆[n],|I|≤k satisfying the following ODEs:

dµ̂I(t)

dt
=−

|I|∑
s=1

δis µ̂I(t)

+

|I|∑
s=1

∑
`∈N−is

βis`

(
µ̂I∪{`}\{is}(t)− µI∪{`}(t)

)
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and

dµ̌I(t)

dt
=−

|I|∑
s=1

δis µ̌I(t)

+

|I|∑
s=1

∑
`∈N−is

βis`

(
µ̌I∪{`}\{is}(t)− µI∪{`}(t)

)
,

for all I ⊆ [n], |I| ≤ k, where

µI∪{`} =


µ̌I∪{`}, if |I ∪ {`}| ≤ k,

µ̌?I∪{`}, otherwise,

(7.23)

and

µI∪{`} =


µ̂I∪{`}, if |I ∪ {`}| ≤ k,

µ̂?I∪{`}, otherwise.

(7.24)

In particular, µ̌?I∪{`} and µ̂?I∪{`} are, respectively, the solutions that minimize/maximize

the following SDPs:

min
µI∪{`}

/max
µI∪{`}

µI∪{`}

subject to L̃1
κ(y(I ∪ {`}), s) � 0,∀s ∈ [k],

L̃0
κ(y(I ∪ {`}), s) � 0,∀s ∈ [k].

(7.25)

Let µI(t) = E[φα] be the solution of the ODE in (7.11). Then, if µ̂I(0) ≥ µI(0) ≥ µ̌I(0),

we have that µ̂I(t) ≥ µI(t) ≥ µ̌I(t), for all t ≥ 0 and I ∈ [n], |I| ≤ k. �

Proof. See Appendix A.6.

In the above theorem, we have provided an SDP-based moment-closure procedure for

SIS spreading process. More specifically, when |I| < k, the ODEs in the statement

of the above theorem resemble the ODE in (7.11). Nonetheless, when |I| = k, the

term E[φ1(x)x`] in (7.11) may be of order k + 1; hence, the resulting system of ODEs

cannot be solved. In the above theorem, we derive bounds for moments that are of

order k + 1 by solving the finite-dimensional SDPs in (7.25). Notice that these SDPs
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involve, solely, moments of order up to k. Consequently, all the moments in the ODEs

in Theorem 30 are of order less or equal to k, resulting in a closed system of differential

equations. The theorem also states that, when the ODEs in Theorem 30 share the same

initial conditions as the ODE in (7.11), the solutions are upper and lower bounds on the

exact dynamics of E[φα(x)]. In the next section, we illustrate the proposed approach

to perform a first-order moment-closure of the mean dynamics of the SIS spreading

process.

7.2.3 First Order Moment-closure

In theory, we can upper and lower bound the dynamics of the mean spreading process

in (7.2) by solving the ODEs in Theorem 30. In practice, these ODEs are solved via

numerical methods using a discretized time interval. Notice that, according to Theo-

rem 30, we need to solve the SDPs in (7.23) and (7.24) in each time step, which can be

computationally very challenging in large-scale applications. To undertake this issue,

we will develop a simplified procedure by finding a closed-form solution of the SDPs for

the first-order mean dynamics. Our approach towards deriving a closed-form expression

consists of two steps: First, we explicitly write the moment and localizing matrices in

(7.18) for the first-order mean dynamics; then, we use a generalized version of Sylvester’s

criterion [168] to find a closed-form solution of the resulting SDPs.

When considering the first-order mean-dynamics in (7.2), we aim to derive upper and

lower bounds on the second-order moments µij = E[xixj ] for i 6= j, in terms of first-

order moments µi = E[xi]. In this case, since k = 2, we have that I2 = {i, j} (i.e., i1 = i

and i2 = j). Subsequently, the multi-sequence of interest y(I2) is given by y(I2) =

{1, µi, µj}, and its associated infinite extension is equal to y∞(I2) = {1, µi, µj , µij , . . .}.

More specifically, in the multisequence y∞(I2), the entries are indexed as follows: µα =

µi if α2 = 0, µα = µj if α1 = 0, and µα = µij otherwise. Subsequently, according to
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(7.13), we have that

M1(ŷ(I2)) =


1 µi µj

µi µi µij

µj µij µj

 . (7.26)

Moreover, from (7.15) and (7.16), we construct the following four matrices:

L0
1(ŷ(I2), i) =


µi µi µij

µi µi µij

µij µij µij

 ,

L0
1(ŷ(I2), j) =


µj µij µj

µij µij µij

µj µij µj

 ,
(7.27)

L1
1(ŷ(I2), i) =


1− µi 0 µj − µij

0 0 0

µj − µij 0 µj − µij

 , (7.28)

and

L1
1(ŷ(I2), j) =


1− µj µi − µij 0

µi − µij µi − µij 0

0 0 0

 . (7.29)

Hence, according to Lemma 15, the sequence y∞(I2) has an S̃2-representing measure

with S̃2 =
{
x ∈ R2 : xi, xj ∈ [0, 1]

}
, if and only if, (7.26)–(7.29) are all positive semidefi-

nite. The main idea of our approach is to use a generalized version of Sylvester’s criterion

to replace the linear matrix inequalities in (7.25) by polynomial inequalities, as shown

in the theorem below.

Theorem 31. Consider a directed graph G = (V, E) and a set of n initial values

{µi(0)}ni=1. Let us define two sequences of functions {µ̂i(t)}ni=1 and {µ̌i(t)}ni=1 satis-
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fying the following ODEs:

dµ̂i
dt

= −δiµ̂i +
∑
j

βijµ̂j −
∑
j

βijµij ,

dµ̌i
dt

= −δiµ̌i +
∑
j

βijµ̌j −
∑
j

βijµij ,

with µ̂i(0) = µ̌i(0) = µi(0), where

µij = max{µ̂i + µ̂j − 1, 0}, (7.30)

µ
ij

= min{µ̌i, µ̌j}. (7.31)

Then µ̂i(t) ≥ µi(t) ≥ µ̌i(t), for all t ≥ 0 and i ∈ [n]. �

Proof. See Appendix A.6.

Several remarks are in order. First, note that we do not need to solve a semidefinite

program to numerically find the upper and lower bounds stated in the above theorem.

Instead, we need to solve a system of 2n piece-wise affine differential equations, where

the piece-wise nonlinearities are described in (7.30) and (7.31). Furthermore, it is, in

principle, possible to use the proposed approach to obtain a whole hierarchy of moment

closures by considering higher-order moments. For example, we could derive a system

of n + m differential equations, where m is the number of edges in the graph, using

both n first-order and m second-order moments. Finally, it is worth noting that the

proposed technique can be generalized to analyze the mean dynamics of other spreading

processes, as we illustrate in the next section.

7.3 Moment-closure of Other Popular Epidemic Model

In this section, we will apply the SDP-based moment closure framework herein proposed

to find upper and lower bounds on the stochastic dynamics of two other networked
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Figure 7-2: In (a) and (b), we show the transition between states in the SI-spreading
process and SIR-spreading process, respectively.

epidemic models, namely, the SI and the SIR models.

7.3.1 Susceptible-Infected (SI) Epidemic Model

In the SI networked epidemic model [19], a susceptible node can be infected by its

infected in-neighbors; however, once the node is infected, it remains infectious forever

(see Figure 7-2-(a) for a detailed transition diagram). Let xi be a binary random variable

representing the state of node i, where xi(t) = 0 if node i is susceptible at time t and

xi(t) = 1 if it is infected. The stochastic dynamics of the networked SI process can be

modeled using the following jump-process:

dxi = (1− xi)
∑
j∈N−i

xjdPβij . (7.32)

Notice that this SDE is similar to (7.7), after removing the term describing the recovery

process. Consequently, using the techniques used to prove Theorem 29, we can readily

obtain the following ODE describing the evolution of any moment µI(t), for any choice

of I ⊆ [n]:

dµI(t)

dt
=

|I|∑
s=1

∑
`∈N−is

βis`
(
µI∪{`}\{is} − µI∪{`}

)
. (7.33)

Since the random variables defining the states of nodes in the network are binary, we can

use the techniques used in the analysis of the SIS model to find upper and lower bounds

in the moment dynamics. In particular, the finite-dimensional moment and localizing

matrices proposed in Subsection 7.2.2 can be directly used in here. Thus, we can obtain

the following corollary from Theorem 30.
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Corollary 5. Given a directed graph G = (V, E), let us define two sequences of functions

{µ̂I(t)}I⊆[n],|I|≤k and {µ̌I(t)}I⊆[n],|I|≤k satisfying the following ODE’s:

dµ̂I(t)

dt
=

|I|∑
s=1

∑
`∈N−is

βis`

(
µ̂I∪{`}\{is}(t)− µI∪{`}(t)

)

dµ̌I(t)

dt
=

|I|∑
s=1

∑
`∈N−is

βis`

(
µ̌I∪{`}\{is}(t)− µI∪{`}(t)

)
,

for all I ⊆ [n], |I| ≤ k, where µI∪{`} and µI∪{`} are defined as in (7.23) and (7.24),

respectively. If µ̂I(0) ≥ µI(0) ≥ µ̌I(0), then µ̂I(t) ≥ µI(t) ≥ µ̌I(t), for all t ≥ 0 and

I ∈ [n], |I| ≤ k. �

7.3.2 Susceptible-Infected-Removed (SIR) spreading process

In the case of SIR spreading process, nodes in G can be in one out of three states:

susceptible, infected, or removed, at any time instance. A node is in the removed state

when it has been infected in the past, it has recovered from the infection, and has

developed permanent immunity to the disease (see Figure 7-2-(b) for a detailed transition

diagram); hence, it cannot be infected again in the future. In what follows, we use

{0, 1}-valued random variables xi,S(t), xi,I(t), and xi,R(t) to indicate whether node i is

susceptible, infected, or removed at time t, respectively. Since node i can only be in

exactly one compartment at every time instance, we have that xi,S(t)+xi,I(t)+xi,R(t) =

1 for all t ≥ 0. With these definitions, the two transition probabilities among states are

characterized by:

P(xi,I(t+ h) = 1 | xi,S(t) = 1) = h
∑
j∈N−i

βijxj,I(t) + o(h),

P(xi,R(t+ h) = 1 | xi,I(t) = 1) = δih+ o(h).

(7.34)
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We assume that a node is either susceptible or infected at time t = 0. The evolution of

the network states are characterized by the following set of SDEs:

d


xi,S

xi,I

xi,R

 =


0

−xi,I

xi,I

 dPδi +
∑
j∈N−i


−xi,Sxj,I

xi,Sxj,I

0

 dPβij , (7.35)

for all i ∈ [n], where all the Poisson jump-processes are independent. From (7.35), the

expectation of the random variable xi,S satisfies

dE[xi,S(t)]

dt
=
∑
j∈N−i

βijE[xi,S(t)xj,I(t)]. (7.36)

Therefore, in order to solve for E[xi,S(t)], it is necessary to characterize the evolution of

E[xi,Sxj,I ] over time.

In what follows, we apply the framework herein proposed to derive a closed system of

ODEs bounding the mean SIR spreading process. We start by computing the mean

dynamics of the SIR spreading process via Ito’s formula, as follows.

Theorem 32. Consider the networked SIR process described in (7.35). Given the vec-

tors α,β,γ ∈ Nn, define the monomial φα,β,γ(x) = Πn
i=1x

αi
i,Sx

βi
i,Ix

γi
i,R. Then,

dE[φα,β,γ(x)]

dt
= −

n∑
s=1

δs1βs 6=0E[φα,β,γ(x)]

+
n∑
s=1

δs1βs=0∩γs 6=0E[Πk∈[n],k 6=`x
αk
k,Sx

βk
k,Ix

γk
k,Rx

α`
`,Sx`,I ]

−
n∑
s=1

∑
`∈N−s

βs`1αs 6=0E[φα,β,γ(x)x`,I ]

+

n∑
s=1

∑
`∈N−s

βs`1αs=0∩βs 6=0E[φα,β,γ(x)x`,I ]

(7.37)

Proof. See Appendix A.6.
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Hereafter, given two sets of indices I,J ⊆ [n], we define

µI,J = E[Πi∈Ixi,SΠj∈J xj,I ]. (7.38)

In particular, when I (resp. J ) is a singleton, i.e., I = {i} (resp., J = {j}), we also

write µI,J = µi,J (resp., µI,J = µI,j). Letting γ = 0n in (7.37), we obtain

dµI,J (t)

dt
=−

∑
s∈J

δsµI,J (t)−
∑
s∈I

∑
`∈N−s

βs`µI,J∪{`}

+
∑
s∈J\I

∑
`∈N−s

βs`µI,J∪{`},

(7.39)

which depends only on moments of xi,S and xi,I for i ∈ [n]. In order to solve the above

system of ODEs, we need to provide bounds on µI,J∪{`} using lower-order moments.

To achieve this goal, similar to the case of SIS spreading process, we aim to construct

moment and localizing matrices, as listed in (7.18). We consider a slight abuse of

notations by replacing k in y(Ik) with |I|+ |J |, and y(Ik) with

y(I,J ) = {µI′,J ′}|I′|+|J ′|<k.

With this definition, we construct finite-dimensional matrices analogous to the ones

in (7.13), (7.15), and (7.16) using elements in yI,J accordingly. For example, to close

the first-order mean dynamics of the SIR spreading process, the moment matrix defined

in (7.13) becomes:

M1(y({i}, {j})) =


1 µi,∅ µ∅,j

µi,∅ µi,∅ µ∅,j

µ∅,j µi,j µ∅,j

 . (7.40)

Since xi,S and xi,I are binary random variables for all i ∈ V, Lemma 15 can be applied

without loss of generality.

To provide upper and lower bounds for the moment µI,J∪{`}, we build 2k + 1 matrices

using elements in y(I,J ∪{`}) and solve for the maximum and minimum value µI,J∪{`}

such that those matrices are positive semidefinite. Denoting those extreme values by
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µI,J∪{`} and µI,J∪{`}, we have that µI,J∪{`} ∈ [µI,J∪{`}, µI,J∪{`}]. Finally, we adopt a

similar treatment to the localizing matrices as in (7.21) and (7.22), i.e., replacing the

entries within localizing matrices by upper and lower estimates µ̂I,J and µ̌I,J . We use

µ̌?I,J∪{`} and µ̂?I,J∪{`} to denote the lower and upper estimates of µI,J obtained by

solving SDPs using modified localizing matrices. As a result, we obtain the following

theorem for the networked SIR epidemic model:

Theorem 33. Consider the networked SIR process described in (7.35). Let us define a

sequence of functions {µ̂I,J (t), µ̌I,J (t)}I,J⊆[n],|I|≤k satisfying the following ODEs:

dµ̂I,J (t)

dt
=−

∑
s∈J

δsµ̂I,J (t)−
∑
s∈I

∑
`∈N−s

βs`µI,J∪{`},

+
∑
s∈J\I

∑
`∈N−s

βs`µI,J∪{`},

dµ̌I,J (t)

dt
=−

∑
s∈J

δsµ̌I,J (t)−
∑
s∈I

∑
`∈N−s

βs`µI,J∪{`},

+
∑
s∈J\I

∑
`∈N−s

βs`µI,J∪{`},

where

µI,J∪{`} =


µ̂I∪{`}, if |I|+ |J ∪ {`}| ≤ k,

µ̂?I,J∪{`}, otherwise,

(7.41)

and

µI,J∪{`} =


µ̌I,J∪{`}, if |I|+ |J ∪ {`}| ≤ k,

µ̌?I,J∪{`}, otherwise,

(7.42)

for all I,J ⊆ [n]. If µ̂I,J (0) ≥ µI,J (0) ≥ µ̌I,J (0), then µ̂I,J (t) ≥ µI,J (t) ≥ µ̌I,J (t),

for all I,J ⊆ [n] and t ≥ 0.

Proof. See Appendix A.6.

In the next section, we demonstrate the performance of the moment-closure framework

herein proposed on both the SIS and SIR epidemic processes taking place in a real social

network.
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Figure 7-3: Topology of the Zachary’s Karate Club, representing friendships among 34
individuals.

7.4 Simulation

In this section, we demonstrate the SDP-based moment-closure framework by finding

upper and lower bounds on the probabilities of infection of all nodes in a real social

network. In our first set of simulations (Subsection 7.4.1), we implement the exact

stochastic SIS spreading process, as described in [127]. We simulate 10,000 realizations

of the stochastic process using the same initial conditions and compute the evolutions

of the empirical average of the probabilities of infection, which is an approximation of

the mean SIS dynamics. We then execute our SDP-based moment-closure technique,

using Theorem 31, in order to obtain the upper and lower bounds on the mean SIS

dynamics, µ̂i(t) and µ̌i(t). Furthermore, we compare the time evolution of these bounds

with the widely used mean-field approximation (7.3). In our second set of simulations

(Subsection 7.4.2), we apply similar analysis to the SIR spreading process.

7.4.1 Moment-closure of the SIS Epidemic Process

In this subsection, we run the stochastic SIS dynamics over the Zachary’s Karate

Club [178], plotted in Figure 7-3. In our experiments, we choose the individuals with

labels S = {3, 5, 6, 14, 16, 17, 20, 23} to be initially infected. The infection rates satisfy

βij = β = 1 for all (i, j) ∈ E and the recovery rates are δi = δ = 7.4 for all nodes.
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According to [87], the expected number of infected individuals converges towards zero

exponentially fast if τ = β
δ < 1

λ1(A) , where λ1(A) is the largest absolute eigenvalue

of the adjacency matrix. In our case, the largest eigenvalue of the Zachary’s network

equals to λ1(A) = 6.7257; hence, the condition τ < 1
λ1(A) is satisfied. As illustrated in

Figure 7-4, the empirical average of number of infected nodes decreases exponentially

over time. In Figure 7-5, we plot the evolution of the mean SIS dynamics of each node

in the Zachary’s network.Our simulations show the validity of the bounds obtained by

our moment-closure framework.

7.4.2 Moment-closure of the SIR Epidemic Process

We proceed to demonstrate our SDP-based moment-closure scheme on the SIR model.

In these experiments, we use again Zachary’s network. In our simulations, we have

selected the following set of initially infected nodes: D = {5, 22, 28, 31, 32}; all remaining

nodes are initially in the susceptible state. We set the infection rates to be βij = β = 10,

whereas the recovery rates are δi = δ = 6.7257 for all nodes. Due to space limitations, we

show in Figure 7-6 the evolution of {µ̂i,S(t), µ̂i,I(t), µ̂i,R(t)} and {µ̌i,S(t), µ̌i,I(t), µ̌i,R(t)}

for the nodes in the subset {2, 7, 22, 29}. Notice that the proposed moment-closure

technique does indeed upper and lower bounds the true mean dynamics of the SIR

model. Nonetheless, the performance of these bounds varies. For example, in Figure 7-

6-(c), both bounds remain close to the true mean dynamics. However, in Figure 7-6-(a),

the upper estimate µ̂2,I fails to keep track of the true evolution of µ2,I(t). There are

several possible reasons for this to happen. For example, as shown in (7.35), at every

time instance, we have µi,S(t) + µi,I(t) + µi,R(t) = 1; however, the proposed upper and

lower estimates fail to preserve this property.

7.5 Coinfection Control in Multi-layer Networks

The preceding sections of this chapter mainly concerns about the dynamic behavior of

single-disease processes in single-layer networks. In the following sections, we analyze
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Figure 7-4: This figure depicts upper and lower bounds on the expected number of
infected nodes. The solid black line represent the empirical average over 10000 real-
izations of the number of infected nodes over time. The dashed line and the shaded
region represent the expected number of infected nodes calculated via the mean-field
approximation and the SDP-based moment-closure technique, respectively.

Figure 7-5: Dashed lines represent the empirical averages of 10,000 realizations of the
stochastic SIS dynamics for each node i. The dotted lines represent the trajectories
obtained from the mean-field approximation for each node. The solid lines represent
µ̂i(t) and µ̌i(t) for each node i. Finally, the shaded areas are filling the gap between the
empirical average and µ̌i(t) for each node i.

the problem of simultaneously controlling the spread of several diseases by distributing

different types of vaccines throughout the nodes of a multilayer contact network (see
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Figure 7-6: Dashed lines represent the average of 10,000 realizations of stochastic SIR
dynamics for each node i. In subfigures (a)–(d), we show the evolution of µ̂i,C(t) and
µ̌i,C(t), where C ∈ {S, I,R}, for the nodes i = 2, 7, 22, 29, respectively. For instance, in
(a), blue and green lines in each of the subplots (from up to down) show the evolution
of {µ̂2,S(t), µ̌2,S(t)}, {µ̂2,I(t), µ̌2,I(t)}, and {µ̂2,R(t), µ̌2,R(t)}, respectively.

Subsection 7.5.1). We based our work on the so-called SI1SI2S, analyzed by Sahneh and

Scoglio in [143], which extends the popular SIS epidemic model to the case of competi-

tive viruses in a two-layer network of identical agents. We further propose an extension

of this model to the case of non-identical agents and an arbitrary number of layers and

viruses, which we call (SIS)L spreading model (see Subsection 7.5.2). In our setting,

we assume that we can modify the susceptibility of an individual to a particular disease

by inoculating an antidote specifically design to fight that disease. In real applications,

fabricating and distributing antidotes throughout a population has an associated cost.

Hence, while facing simultaneous diseases, the agency responsible for disease control

must decide how to invest its budget on the fabrication and allocation of different vac-

cines throughout the nodes and layers of the network (see Subsection 7.5.4). We obtain a

global vaccination strategy using Geometric Programming (see Subsection 7.5.5). Addi-

tionally, we provide an alternative vaccination strategy based, solely, on local structural

information of the network (Subsection 7.5.6). Finally, we illustrate the performance

of global vaccination strategy and local vaccination strategy on the (SIS)L spreading

process taking place in a synthesized network.
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Figure 7-7: A three-layer network, G = {V, E1, E2, E3}.

7.5.1 Multi-layered Network

To formulate the problem of interest, we first adopt the notations in Subsection 2.1.2.

Furthermore, in a directed graph G(V, E), we define the out-neighborhood of node i

by N+
i = {j|j ∈ V, (i, j) ∈ E}. The in-neighborhood is similarly defined as N−i =

{j|j ∈ V, (j, i) ∈ E}. The out-degree and in-degree of node i are defined as d+
i = |N+

i |

and d−i = |N−i |, respectively.

We study spreading processes in multilayer networks. A multilayer network is repre-

sented by the tuple G = (V, E1, · · · , EL), where V = [n] is the set of nodes, and El is the

set of edges corresponding to layer l. The edge-set E in a multilayer network is the union

of edge sets El for l ∈ [L]. As in the case of simple graphs, the structure of layer l ∈ [L]

can be algebraically represented using the adjacency matrix of that layer, which we de-

note by Al = (aij,l)ij . Furthermore, we define the out-neighbor and in-neighbor of node

i in layer l as N+
i,l = {j|j ∈ V, (i, j) ∈ El} and N−i,l = {j|j ∈ V, (j, i) ∈ El}, respectively.

7.5.2 Non-Homogeneous (SIS)L Spreading Model

In this section, we describe the non-homogeneous (SIS)L model. This model is an

extension of the continuous-time competitive spreading model, denoted by SI1SI2S,
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Figure 7-8: (SIS)L model for a particular node i ∈ V.

was studied by Sahneh and Scoglio in [143]. In the SI1SI2S, two competing diseases

propagate through a two-layer network. In the (SIS)L model, we consider L diseases

propagating through different layers of a multilayer network. Fig. 1 shows the structure

of a network with three spreading diseases. The state of each node in this model can

fall into one of two cases: (i) ‘Susceptible’ or healthy state, in which the node is not

infected by any diseases, (ii) ‘Infection’ state, in which the node is infected by one (and

only one) of the L diseases propagating in the network. Fig. 2 represents the transition

diagram, with L+ 1 states, for each node i ∈ V. Whenever node i is in the susceptible

state, it can be infected by the l-th diseases with a rate proportional to the infection rate

βi,l > 0, which is both node- and disease-dependent. In contrast, if node i is infected by

disease l, it cures itself at rate δi,l. Notice that, in this model, once a person is infected

by one of the diseases, he/she is immune to other diseases until recovery.

The dynamics of such network can be modeled by a continuous-time Markov process.

Following the modeling procedure in [143] for the case of a network with two layers, and

extending it to multiple layers we can derive a mean-field approximation of the (SIS)L

model, as follows. Let us denote by pi,l(t) the probability of node i being infected by

disease l at time t. Hence, the mean-field approximation provides us the following set

of ordinary differential equations:

dpi,l (t)

dt
= βi,l(1−

L∑
k=1

pi,k(t))

n∑
j=1

aij,lpj,l (t)− δi,lpi,l (t) , (7.43)

for i ∈ [n] and l ∈ [L]. This set of equations can be converted into a compact matrix
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form:

dpl (t)

dt
= (BlAl −Dl) pl (t)−P (t)BlAlpl (t) , (7.44)

for l = 1, 2, · · · , L, where pl (t) := (p1,l (t) , . . . , pn,l (t))
T , Bl := diag(βi,l), Dl :=

diag (δi,l), and P (t) := diag(
∑L

l=1 pi,l).

7.5.3 Stability Analysis of Competitive Spreading Model

The nonlinear system of ODEs in (7.44) can be linearized around the disease-free equilib-

rium, p∗l = 0, ∀l = 1, 2, · · · , L. We can therefore linearize (7.44) around this equilibrium,

resulting in the following system of linear ODEs:

dp̃l (t)

dt
= (BlAl −Dl) p̃l (t) , ∀l ∈ [L]. (7.45)

If all the eigenvalues ofBlAl−Dl lie in the open left half-plane, i.e., ρl := max{<(λi(BlAl−

Dl))} < 0 for all l = 1, 2, · · · , L, the nonlinear dynamics is locally asymptotically stable.

Furthermore, since P (t) , Bl, Al ≥ 0, then dpl(t)
dt ≤ (BlAl −Dl) pl (t). In other words,

the linearized dynamics in (7.45) upper-bounds the nonlinear dynamics in (7.44) for

all layers and identical initial conditions. Therefore, if ρl < 0 the nonlinear dynamics

in (7.44) is not only locally, but also globally exponentially stable. Moreover, for pl(0)

close to the origin, pl → 0 exponentially fast and the exponential decay rate at layer l

is given by ρl.

7.5.4 Budget-constrained Vaccine Allocation Problem

In this subsection, we describe the problem of simultaneously controlling several diseases

propagating in a multilayer network. We assume that we are able to distribute vaccines

able to reduce the infection rate of disease l in node i, βi,l. To make the modelling more

realistic, we assume the feasible infection rates satisfy: βi,l ∈
[
β
i,l
, βi,l

]
. In addition,

we also assign costs to these resources. We define fi,l : R+ → R+ as a node-dependent

(indicated by subscript i) and disease-dependent (indicated by subscript l) vaccination
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cost function, such that fi,l(β) represents the cost of achieving an infection rate β in node

i for disease l. We assume that the cost functions fi,l is monotonically decreasing with

respect to β (i.e., the lower the β, the higher the cost). In what follows, we put ourselves

in the position of the agency responsible for controlling all the diseases propagating in

the network. Hence, given a fixed budget C, how should we invest on different vaccines

to control all these different diseases? In this paper, we propose a convex optimization

framework to find the optimal budget allocation to maximize the exponential decay rate

of the slowest decaying disease. This problem can be formulated as follows:

Problem 12. ( Budget-constrained allocation) Given the following elements: (i) A

multilayer graph G = (V, E1, · · · , EL) (directed or undirected), where the adjacency matrix

of layer l is Al; (ii) a set of cost functions {fi,l}i∈[n],l∈[L]; (iii) limits on the infection

rates β
i,l
, βi,l; and (iv) a total budget C. Find the optimal budget allocation to maximize

the minimum exponential decay rate among all diseases.

Next, we propose a convex formulation to efficiently solve this problem. As shown above,

the linearized dynamics upper-bound the nonlinear dynamics and is a good approxima-

tion of the nonlinear dynamics for small densities of infection. Hence, the decaying rate

of disease l is given by the eigenvalue with the largest real part of BlAl − Dl, which

we denote by λmax(BlAl − Dl). Hence, we reformulate Problem 12 as the following

optimization:

minimize
{εl,βi,l}l∈[L]

i∈[n]

max {ε1, ε2, . . . , εL}

subject to λmax(BlAl −Dl) ≤ εl, l ∈ [L]

L∑
l=1

(
n∑
i=1

fi,l (βi,l)

)
≤ C,

β
i,l
≤ βi,l ≤ βi,l,

∀i = 1, . . . , n, l = 1, · · · , L.

Notice that the optimal values for βi,l represent the achieved infection rates after the

budget is allocated optimally. In the next three subsections, we reformulate the above
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as a convex optimization using Geometric Programming. Moreover, we also propose a

relaxed formulation when global knowledge about the structure of the network is not

available.

7.5.5 GP for Coinfection Control in Directed Networks

We now introduce some basic concepts about geometric programming that are use-

ful in our formulation, which works for both directed and undirect networks. Let

x1, . . . , xn > 0 denote n decision variables and define x , (x1, . . . , xn) ∈ Rn++. A

monomial h(x) is defined as a function of the form h(x) , dxa1
1 x

a2
2 . . . xann , where d > 0

and ai ∈ R. A posynomial function q(x) is defined as a non-negative sum of monomials:

q(x) ,
∑K

k=1 ckx
a1k
1 xa2k

2 . . . xankn , where ck > 0. There are a few algebraic manipula-

tion properties related to posynomials. They are closed under addition, multiplication,

and nonnegative scaling. In addition, a posynomial divided by a monomial is also a

posynomial. A geometric program (GP) is an optimization problem of the form:

minimize f(x) (7.46)

subject to qi(x) ≤ 1, i = 1, ...,m,

hi(x) = 1, i = 1, ..., p,

where qi are posynomial functions, hi are monomials, and f is a log-convex function. A

GP is a quasi-convex optimization problem [109], by a change of variables, GP can be

converted it into a convex optimization problem.

We make some assumptions on the structure of the network and the cost functions.

First, we assume is that the adjacency matrices Als are strongly connected. Therefore,

by Perron-Frobenius lemma [168], we have that ρl is a real, simple, and positive eigen-

value. Second, we also assume that the cost functions fi,l can be approximated using

posynomials. By defining δ̂i,l = 1 − δi,l for all i ∈ [n], l ∈ [L], hence ensuring entrywise

nonnegativity of matrix BlAl + I −Dl, we can solve Problem 1, for directed networks,
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using the following formulation:

min.
{ρl,ui,l,βi,l}l∈[L]

i∈[n]

ε (7.47)

subject to ρl ≤ ε, l ∈ [L] (7.48)

βi,l
∑n

j=1Aij,luj,l + δ̂i,lui,l

ρlui,l
≤ 1, l ∈ [L] (7.49)

L∑
l=1

(
n∑
i=1

fi,l (βi,l)

)
≤ C, (7.50)

β
i,l
≤ βi,l ≤ βi,l, (7.51)

∀i ∈ [n], l ∈ [L] (7.52)

The above formulation is a geometric program that can be solved using standard off-

the-shelf software in polynomial time [132].

7.5.6 Local Policy for Coinfection Control

The previous approach is based on the assumption that a central agency have full infor-

mation about the entire structure of the contact network. Nonetheless, in many practical

situations, it is impossible to retrieve the complete network structure. In contrast, it

is likely that each agent has access to a local, myopic view of its neighborhood, Ni. In

this case, it is convenient to develop alternative disease-control strategies that make use

of local information, solely. In this subsection, we propose such an approach, in which

each agent in the network is able to decide about its protection level based solely on

its local view of the network. The following definitions and results are relevant in our

derivations:

Definition 25 (Gershgorin disk). Let M = [mij ] be a n × n matrix, and define Ri :=∑
j 6=i |mij |. Then, the Gershogrin disks are defined as the closed disks D (mii, Ri) :=

{z ∈ C : |z −mii| ≤ Ri}, for i ∈ [n].

Theorem 34 (Gershgorin circle theorem, [168]). Every eigenvalue of M lies within at
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least one Gershgorin disk D(mii, Ri), i ∈ [n].

Since M and MT has a same set of eigenvalues. We have that every eigenvalue of M

lies within at least one Gershogrin disk D(mii, R̂i), with R̂i =
∑

i 6=j |mij |. Based on

Gershgorin’s theorem, we have the following result.

Theorem 35. The linearized dynamics in (7.45) is stable if either (i)
∑n

j=1 βj,laji,l <

δi,l, or (ii) βi,ld
out
i,l < δi,l are satisfied for all i = 1, 2, . . . , n and l = 1, 2, · · · , L.

Proof. The proof is a direct application of Theorem 34 to Ml := BlAl − Dl for Bl =

diag(βi,l) and Dl = diag (δi,l).

Corollary 6. Assume homogeneous infection rates, i.e. βl = βi,l for all i = 1, 2, . . . , n.

Then, the linearized system (3) is stable if βld
in
i,l < δi,l holds for all i = 1, · · · , n and

l = 1, · · · , L, where dini,l is the in-degree of node i ∈ V at layer l.

Proof. As shown in the above proof in Theorem 35, we have that mii,l = −δi,l and

Ri,l =
∑

j,aji,l 6=0 βj,l. Since βl = βj,l, then Ri,l = βi,l
∑

j aji,l = βld
in
i,l. The rest follows

from Theorem 35.

From Theorem 35, whether the linearized dynamics in (7.45) is stable or not is directly

linked to the number of out-neighbors of each node. This allow us to use only local

information to distribute the resources (i.e. changing βi,l and δi,l). Notice that in

Theorem 35, inequalities are strict. To cope with strict inequalities, we can introduce

slack variables ε > 0 to convert into βi,ld
out
i,l + ε ≤ δi,l. Therefore, the problem proposed
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in section II-D can be relaxed into the following linear program.

min.
ε,{βi,l}l∈[L]

i∈[n]

ε (7.53)

subject to δi,l − ε ≥
n∑
j=1

βj,laji,l (7.54)

δi,l − ε ≥ βi,ldouti,l , ∀i, l (7.55)

L∑
l=1

(
n∑
i=1

fi,l (βi,l)

)
≤ C, (7.56)

β
i,l
≤ βi,l ≤ βi,l, (7.57)

∀i = 1, . . . , n, l = 1, · · · , L (7.58)

Notice that, when Bl is homogeneous, we can simplify equation (7.55) into δl − ε1 �

βld
out
l where doutl is the degree vector at layer l of the form

[
dout1,l , d

out
2,l , · · · , doutn,l

]T
and

� denotes component-wise inequality. Futhermore, if the underlying network is undi-

rected, the out-degrees are the same as the in-degrees and hence (7.54) and (7.55) are

equivalent. Notice that the feasibility of such formulation ensures the stability of the

linearized system described in (7.45). However, we have no information on the location

of the ρls. Therefore, it is natural to see that increasing the budget limitation may or

may not lead to a lower decay rate. Using such local distribution strategy, we have no

guarantee on the performance of the decay rate of spreading process.

7.5.7 Simulations on Vaccination Strategies

In this subsection, through simulations, we will study performance of the convex for-

mulations. In addition, we will compare the difference between global vaccination and

local vaccination strategies.

Global vaccination Strategies: We illustrate the approaches in the previous sub-

section using a two-layer network with n = 50 nodes. The first layer of the network

is a circular network with each node connecting to its first and second neighbors, i.e,
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Figure 7-9: Graph visualization of A1(shown in blue lines) and A2(show in red lines)
with 10 nodes.

vi+1 ∼ v mod (i+1,n)+1 and vi+1 ∼ v mod (i+2,n)+1 for i = 0, 2, · · · , n−1. The second layer

of the network is an Erdös-Rényi graph with edge-probability p = 0.3. A visualization

of both layers with 10 nodes and p = 0.1 is depicted in Figure 7-9.

We assume that the infection rates are homogenous for both layers, thence βi,1 = β1 and

βi,2 = β2, with β1 = 0.0625 and β2 = 0.0181. The curing rates δi,l’s are non-homogenous

for all i ∈ [n] and l = 1, 2 and are drawn randomly in the range [0.1, 0.3]. In our example,

after we sample δi,l, the maximum eigenvalue of βlAl − diag{δi,l} are ρ1 ≈ 0.072 and

ρ2 ≈ 0.061. In this case, since the maximum eigenvalues are positive, from Section II,

we know that the uncontrolled (SIS)L system is unstable and an epidemic outbreak

may happen.

We then use our formulation in the previous subsection to allocate vaccines. Figure 7-

10 and Figure 7-11 show the optimal resource allocation using a total budget of C =

5000, and a vaccination cost function fi,l = 1
βi,l

for all i ∈ [n] and l ∈ [L]. We can

expect that if one node is connected to more neighbors, it should have higher priority

in getting antidotes to lower its infection rate. As shown in Figure 7-10, there is a

negative correlation between degrees and optimal spreading rate with a linear correlation

coefficient 0.2180. Nonetheless, the relation is non-trivial, as shown by the allocation

result in layer 1 (the ring graph). Each of the node in layer 1 has exactly 4 neighbors, but
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Figure 7-10: Optimal infection rates versus out-degrees for each one of the layers in a
two-layer network.

the assigned infection rates varies drastically. In Figure 7-11, we plot the relationship

between the optimal β’s and eigen-centrality of each node. Similarly, we can observe

that the higher the centrality of a node, the lower its infection rate. This relation

is far from linear after we derive its linear correlation coefficient to be 0.2197 using

linear regression. Therefore, to control multiple diseases within such framework, we

cannot simply allocate vaccines to those who has large amount of neighbors (measured

using degrees) or who has certain impact in the network (measured by eigen-centrality).

Local Vaccination Strategies: Hereafter, we compare the performance of the LP

formulation based on local information to the global GP formulation. We use the same

network and parameters described in the simulation for global vaccine strategies. In

Figure 7-12, we plot the maximum decay rate obtained using both local and global

strategies as we increase the available budget from C = 1800 to 8900. As expected,

the higher the budget, the more the faster the diseases die out. Though no theoretical

conclusion can be drawn on how suboptimal the local allocation is compared to the global

one, we can see from Figure 7-12 that the local resource allocation approximates the

global allocation for C < 4000. Nonetheless, using only degree information is not enough

to described the topological structure of the network. Therefore, the rate achieved by

the local strategy upper bounds the rate achieved by the global one. The tradeoff
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Figure 7-11: Optimal infection rates versus eigen-centralities for each one of the layers
in a two-layer network.

Figure 7-12: Comparison between global resource allocation and local resource allocation
with varying budget limitations. The blue dots shows the maximum simultaneous decay
rate of global allocation while red shows the maximum decay rate using local allocation

between global and local strategy is that, global method provides a more detailed plan

for vaccination than the local one, but it requires more information about the network

topology. In contrast, the local method is less efficient in controlling the outbreak, but

requires only myopic information about the network structure.
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Chapter 8

Applications of the K-moment

Problem

In Chapter 6 and 7, we have leveraged the connection between semidefinite program-

ming and multidimensional moment problem to bound the spectral radius of a simple

directed graph as well as providing moment-closure of several popular networked spread-

ing processes. In this section, we further leverage this connection to lower-bound the

algebraic connectivity of an undirected graph (see Section 8.1) and characterize safety

in nonlinear dynamical systems (see Section 8.2).

8.1 Lower Bound on the Graph Algebraic Connectivity

In this section, we will provide an lower bound on the algebraic connectivity of an

undirected graph by leveraging the results related to the K-moment problem. Before

explaining our method, we first introduce notions in graph theory that are useful in the

development of our framework. Consider an undirected graph G, we define a diagonal

matrix D by Dii =
∑n

j=1Aij and the Laplacian matrix of G by L = D−A. When G is

undirected, L is a positive semidefinite matrix [168]. In what follows, we use λ1, . . . , λn

to denote the eigenvalues of L, and the eigenvalue spectrum of L is denoted by spec(L) =
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{λi}ni=1. Since L is positive semidefinite, we assume that 0 = λ1 ≤ λ2 · · · ≤ λn without

loss of generality. In particular, λ2 is called the algebraic connectivity of the graph

G. Given a positive number α, we define the perturbed Laplacian by Lα = αI − L.

Consequently, the spectrum of Lα is equal to spec(Lα) = {α − λn, . . . , α − λ2, α}. To

ease notations, we also define λ̃i = α− λn−i+1 for i ∈ [n], and define Iα = αI −D.

8.1.1 Moment-based lower bound on λ2

In this subsection, we derive a relationship between closed walks in G and the power-

sums of the eigenvalues in Lα. As a first step in our approach, we consider an undirected

graph G with Laplacian matrix L, and adjacency matrix A. Given a positive value α

and a positive integer k, we have that

Tr(Lkα) = Tr
[
(αI − (D −A))k

]
= Tr

[
(Iα +A)k

]
= Tr

[
k∑
`=0

(
k

`

)
I`αA

k−`

]

=
k∑
`=0

(
k

`

)
Tr
(
I`αA

k−`
)

=

k∑
`=0

(
k

`

) n∑
i=1

(
(α− di)`[Ak−`]ii

)
.

(8.1)

Since [Ak]ii is equal to the total number of closed-walks of length k starting from vertex

i ∈ V, the above derivation shows that the closed walks in G are related to the power-

sums of of eigenvalues in Lα.

We next provide a relationship between the closed walks in G and the moments of a

probability measure defined on the eigenvalue spectrum of Lα. To achieve this goal, we

first introduce some notions from probability theory that are crucial in the development

of our framework. Consider an R-valued random variable x ∼ µ, the k-th moment of

the random variable x is defined as mk =
∫
R x

kdµ. Given an undirected graph G, we
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define the auxiliary spectral distribution as

µLα(x) =
1

n− 2

n−2∑
i=1

δ(x− λ̃i), (8.2)

where δ() is the Dirac’s delta measure, i.e., the probability measure on R assigning unit

mass to the origin, and zero elsewhere. In other words, the measure µLα is a discrete

probability measure assigning a mass 1/(n − 2) to each one of the n − 2 points in the

set spec(L) \ {λ̃n−1, λ̃n}. Moreover, the k-th moment this measure is equal to

mk =

∫
R
xkdµLα

=
1

n− 2

n−2∑
i=1

λ̃ki

=
1

n− 2

[
Tr(Lkα)− αk − (α− λ2)k

]
.

(8.3)

Since L is positive semidefinite, if α ≥ λn, defining γ = λ̃n−2, we obtain that Lα is also

positive semidefinite. More precisely, µLα(x) is supported on [0, γ]. Consequently, the

sequence of moments of µLα(x) must be [0, γ]-feasible. Therefore, finding the maximum

value of γ for which the sequence of moments of µLα is [0, γ]-feasible will give us an upper

bound on λ̃n−1. In what follows, we use the theory behind the K-moment problem to

derive necessary conditions that must be satisfied for all K-feasible sequences yr =

{yk}k≤r. In particular, the set K under consideration is the closed interval [0, γ].

If yr is the moment sequence for the auxiliary spectral distribution µLα , then yk =

EµLα [xk], for all k ∈ N. Furthermore, as shown in (8.3), the following relationship has

to be satisfied

yk =
1

n− 2

[
Tr(Lkα)− αk − γk

]
,∀k ∈ N. (8.4)

The moment matrix associated with yr is equal to

[Mr]ij = mi+j , for i, j ∈ Nr. (8.5)

Moreover, the measure µLα is supported on interval S = [0, γ]. By defining g1(x) = x
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and g2(x) = γ−x, the set S can be characterized, equivalently by, S = {x ∈ R : g1(x) ≥

0, g2(x) ≥ 0}. Subsequently, the localizing matrices of yr with respect to g1 and g2, are

equal to,

[Lr(g1)]ij = mi+j+1, (8.6)

and

[Lr(g2)]ij = γmi+j −mi+j+1, (8.7)

for i, j ∈ Nr, respectively. According to Corollary 3 in Chapter 6, if yr is a [0, γ]-feasible

moment sequence for the auxiliary spectral distribution, the matrices (8.5)–(8.7) must

be positive semidefinite. Therefore, we find an upper bound on λ̃n−1 by finding the

largest value of γ subject to these matrices being positive semidefinite, as described in

the following theorem.

Theorem 36. Let r be an arbitrary positive integer and d = 2r + 1. Denote by γ?r the

solution of the following semidefinite program:

maximize
γ,yd

γ

subject to Mr � 0

Lr(gi) � 0, for all i ∈ [2],

(8.8)

where Mr and Lr(gi) are defined in (8.5)–(8.7). Let λ?r = α− γ?r, then, λ?r ≤ λ2 for all

r ∈ N. Furthermore, λ?r is a non-decreasing function of r ∈ N.

Proof. The proof follows similar idea as in the proof of Theorem 23 from Chapter 6.

8.1.2 Simulations

In this section, we empirically demonstrate the validity of our bounds on random undi-

rected graphs and on real-world networks.

We first examine our bounds on Erdős-Rényi random graphs with n = 1000 nodes.
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Figure 8-1: The degree distribution of a realization of the (a) Erdős-Rényi random graph
with n = 100 and p = 0.007, and (b) Chung-Lu random graph with n = 1000.

We set the probability of edge to be p = 0.007. With these parameter settings, we

generate a numerical realization of the random graph G with Laplacian L and the

degree distribution of this graph in Figure 8-1-(a). In this case, the second smallest

eigenvalue of L, i.e., the algebraic connectivity, is equal to 0.8211, whereas the edge-cut

is equal to 0.8. In Figure 8-2, we show the evolution of lower bounds computed using

Theorem 36 with different values of r. As shown in the figure, λ?r is equal to zero when

r ≤ 6. The intuition behind this is that, it is possible that there exists a disconnected

graph G′ with the same amount of closed-walks of length up to 12 as in G. In this case,

the algebraic connectivity of G′ is equal to 0. As r increases, we obtain information

about long closed-walks in the graph, hence the quality of our lower bounds increase.

We next generate random graphs according to the Chung-Lu model [179]. As described

in Section 6.4 of Chapter 6, it is possible to generate random graphs whose degree dis-

tribution obeys a power-law distribution. In this experiment, we consider the following

parameters: n = 1000, β = 5, d = 40 and ∆ = 100. We obtain a sample from this ensem-

ble of random graphs, whose algebraic connectivity is equal to λ2 ≈ 14.3211. We depict

the degree-distribution of this particular sample in Figure 8-1-(b). Using Theorem 36,

we obtain a sequence of lower bounds on λ2 with varying r, as shown in Figure 8-2-(b).
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Figure 8-2: The lower bounds on algebraic connectivity of a sample of (a) Erdős-Rényi,
and (b) Chung-Lu random graph computed using Theorem 36 with varying r.

Different from the case of Erdős-Rényi random graph, the lower bound becomes tight

when r = 6. Next, we explore our framework on a selected set of real-world networks

obtained from [180]. In order to provide reasonable lower bounds, we assume that all

networks have only one connected component, i.e., λ2 > 0. In particular, we concen-

trate on finding the algebraic connectivity of the largest connected component in an

undirected graph when it contains multiple connected components.

Type Size λ2 r λ?r

Crime 439 0.00682 5 0.00680

Wikipedia 889 0.0822 8 0.0822

Social 1446 0.3219 5 0.3218

Social 2235 0.3726 10 0.3725

Protein 2224 0.0599 4 0.0150

Table 8.1: This table shows the true algebraic connectivity (column 2, denoted by λ2),
the first value of r at which λ?r > 0 (column 3), and lower bounds on λ2 computed using
Theorem 36 (column 4, denoted by λ?r), respectively.

164



8.2 Safety Verification of Non-linear Systems

The ability to provide safety certificates about the behavior of complex systems is critical

in many engineering applications [181–185]. Although safety verification is a mature area

with many success stories [186, 187], the verification of nonlinear dynamical systems over

nonconvex unsafe regions remains a challenging problem [188, 189].

In the past decades, various solutions have been proposed to verify the safety of dynam-

ical systems. The solution approaches often fall into the following two categories: (i)

reachable set methods [190–192], and (ii) Lyapunov function methods [193–196]. Essen-

tially, reachable set methods aim to find a set containing all possible states at a given

time, for a given set of initial conditions. Subsequently, if the reachable set does not

intersect with the pre-specified unsafe regions, the system is considered to be safe. For

example, in [190] the reachable set is found for continuous-time linear systems, whereas

in [191] and [192] the reachable sets are computed via approximations for nonlinear

dynamical systems. In [197], the authors applied a reachable set method to plan safe

trajectories for autonomous vehicles.

While reachable set methods can be used to obtain quantitative guarantees for safety,

the reliability of the result largely depends on the assumptions made about the system,

as well as the form of the unsafe regions. For instance, calculating the volume of the

intersection of two sets, such as the reachable set and the unsafe regions, can become

computationally challenging [189], jeopardizing the practical application of reachable

set methods. An alternative approach to safety verification is based on using Lyapunov-

like functions. In [194], the authors proposed the use of barrier certificates for safety

verification of nonlinear systems. In contrast with the reachable set method, this line

of work does not require to solve differential equations and is computationally more

tractable. Furthermore, it also allows to provide safety certificates for various types of

hybrid [193] and stochastic systems [195].

Despite a tremendous amount of solutions proposed to solve the safety verification prob-

lem, the majority of existing methods only provide binary safety certificates. More
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specifically, these certificates concern only whether the system is safe rather than how

safe the system is. Lacking a detailed analysis of how unsafe a system is may result in

a restricted and conservative design space. To illustrate this point, let us consider the

operation of a solar-powered autonomous vehicle. Naturally, regions without solar expo-

sure are considered to be unsafe, since the battery of the vehicle could be drained after a

period of time. However, it would be inefficient to plan a path for the vehicle completely

avoiding all these shaded regions. Instead, a more suitable requirement would be that

the amount of time the vehicle spends in the shaded regions is bounded. More generally,

this framework can be useful in those situations where the system is able to tolerate

the exposure to a deteriorating agent, such as excessive heat or radiation, for a limited

amount of time.

In this section, we consider this alternative, more flexible notion of safety. More pre-

cisely, we aim to compute the time that a (nonlinear) system spends in the unsafe

regions. In particular, we focus our analysis on the case of systems described by a poly-

nomial dynamics and unsafe regions described by a collection of polynomial inequalities.

To calculate the amount of time spent in the unsafe regions, we use occupation measures

to quantify how much time the system trajectory spends in a particular set [198]. Using

this alternative viewpoint of the system dynamics, the safety quantity of interest can

be calculated by finding the volume of the unsafe region with respect to the occupation

measure [199]. The usage of occupation measures allows us to leverage powerful nu-

merical procedures developed in the context of control of polynomial systems [200–202].

More specifically, we will show that the safety notion under consideration is the solution

of an infinite-dimensional LP. Furthermore, we provide a hierarchy of relaxations that

can be efficiently solved using semidefinite programming by leveraging the results in the

K-moment problem.

In the following subsections, we use δx to denote the Dirac measure centered on a fixed

point x ∈ Rn and we use ⊗ to denote the product between two measures. The ring of

polynomials in x with real coefficients is denoted by R[x], and R[x]r denotes the subset

of polynomials of degree up to r.

166



8.2.1 Problem Statement

We consider a continuous-time autonomous dynamical system whose dynamics is cap-

tured by the following equation:

ẋ(t) = f(t,x), t ∈ [0, T ]

x(0) = x0

(8.9)

where x(t) ∈ Rn is the state vector, x0 is the initial condition, and T > 0 is the terminal

time. We consider that the states of (7.2) are constrained to live within the set X ⊆ Rn

for all t ∈ [0, T ]. Furthermore, we consider that the system evolves from an initial

condition x0, with x0 ∈ X0 ⊆ X . In this paper, we are interested in the case that the

set X is semi-algebraic (see Definition 6.10 in Chapter 6). According to the definition,

the set X can be defined using polynomials gXi (x) ∈ R[x], as follows:

x(t) ∈ X = {x ∈ Rn | gXi (x) ≥ 0, ∀i ∈ [nX ]} (8.10)

for all t ∈ [0, T ]. In this subsection, we consider the following problem:

Problem 13. Consider a compact and semi-algebraic set X , defined by (8.10), and

Xu ⊆ X , defined by:

Xu = {x ∈ Rn | gXui (x) ≥ 0, ∀i ∈ [nXu ]}. (8.11)

Given the autonomous system described in (8.9), with x0 ∼ µ0(X0), where µ0 is a

probability distribution supported on X0, compute the expected amount of time that the

system trajectory spends in the unsafe region Xu.

Notice that this expected time can be computed as:

E
[∫ T

0
1Xu(x(t))dt

]
, (8.12)

where the expectation in (8.12) is taken with respect to the distribution of the initial
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condition x0. We remark that the above formulation is also capable of providing safety

certificate for the system when the initial state is known exactly, i.e., µ0 = δx0 .

8.2.2 Occupation Measure-based Reformulation

In this section, we introduce a measure-theoretic approach to characterize the trajecto-

ries of the autonomous system described in (8.9) presented in Subsection 8.2.2.2. Using

this method, we show that the expectation in (8.12) can be computed via an infinite-

dimensional linear program – see Subsection 8.2.2.3 and Subsection 8.2.2.4. To explain

our approach, we first introduce some notions of measure theory.

8.2.2.1 Notations and Preliminaries

Given a topological space S, we denote byM(S) the space of finite signed Borel measures

on S, and M+(S) its positive cone. Let C(S) and C1(S) be the space of continuous

functions and continuously differentiable functions on S, respectively. The topological

dual of M(S) and C(S) are denoted by M(S)∗ and C(S)∗.

Given a function h ∈ C(S) and a measure µ ∈ M(S), we define the duality bracket

between h and µ by

〈h, µ〉 =

∫
S
hdµ. (8.13)

By Riesz-Markov-Kakutani representation theorem [203], when S is locally compact

Hausdorff, the dual space of C(S) is M(S), in which the norm of C(S) is the sup-norm

of functions and the norm of M(S) is the total variation norm of measures. In the

rest of the paper, we consider compact topological spaces S ⊆ Rn. As a consequence,

both local compactness and separability conditions required to form the duality between

M(S) and C(S) are satisfied. Given a measure µ ∈ M(S), the support of µ, denoted

by supp(µ), is the smallest closed set C ⊆ S such that µ(S \ C) = 0 where smallest is

understood in the set-inclusion sense.
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8.2.2.2 Occupation Measure and Liouville’s Equation

Given an initial condition x0, let x(t | x0) be the solution to (8.9). Given a trajectory

x(t | x0), we define the occupation measure µ(· | x0) of x(t | x0) as

µ(A×B | x0) =

∫
[0,T ]∩A

1B(x(t | x0))dt (8.14)

for all A × B ⊆ [0, T ] × X . Therefore, given sets A and B, the value µ(A × B) equals

the total amount of time out of A that the state trajectory x(t | x0) spends in the set

B. Similarly, we define the final measure µT (· | x0) as

µT (B | x0) = 1B(x(T | x0)) (8.15)

for B ⊆ X . Notice that the occupation measure µ(· | x0) is supported on [0, T ] × X

whereas the final measure µT (· | x0) is supported on X .

Given a test function v ∈ C1([0, T ]×X ), we define the operator L as:

v 7→ Lv =
∂v

∂t
+∇v · f(t,x). (8.16)

The adjoint operator L∗ :M([0, T ]×X )→ C1([0, T ]×X )∗ is given by

〈v,L∗ν〉 = 〈Lv, ν〉. (8.17)

From (8.16), we have that

v(T,x(T | x0)) = v(0,x0) +

∫ T

0

d

dt
v(t,x(t | x0))dt

= v(0,x0) +

∫
[0,T ]×X

Lv(t,x)dµ(t,x | x0)

= v(0,x0) + 〈Lv, µ(· | x0)〉.

(8.18)
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Hence, we can further rewrite (8.18) as

〈v, δT ⊗ µT (· | x0)〉 = 〈v, δ0 ⊗ δx0〉+ 〈Lv, µ(· | x0)〉. (8.19)

In the view of (8.17), since the above equation holds for all v ∈ C1([0, T ]×X ), we obtain

the following equality:

δT ⊗ µT (· | x0) = δ0 ⊗ δx0 + L∗µ(· | x0). (8.20)

Essentially, (8.20) describes the evolution of the distribution of states, given an ini-

tial distribution, under the flow of the dynamics (8.9) – see [204] for a more detailed

discussions.

The measures defined in (8.14) and (8.15) depend on a given initial condition x0. In what

follows, we extend these definitions to handle the case when the system is evolving from

a set of possible initial conditions. Given an initial distribution µ0 with supp(µ0) ⊆ X0,

we define the average occupation measure µ ∈M([0, T ]×X ) as

µ(A×B) =

∫
X0

µ(A×B | x0)dµ0 (8.21)

and the average final measure µT ∈M(X ) as

µT (B) =

∫
X0

µT (B | x0)dµ0. (8.22)

By integrating the left- and right-hand side of (8.18) with respect to µ0, we have that

δT ⊗ µT = δ0 ⊗ µ0 + L∗µ. (8.23)

Note that any family of solutions x(t) of (8.9) with an initial distribution µ0 induces

an occupation measure (8.21) and a final measure (8.22) satisfying (8.23). Conversely,

for any tuple of measures (µ0, µ, µT ) satisfying (8.23), one can identify a distribution

on the admissible trajectories starting from µ0 whose average occupation measure and
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average final measure coincide with µ and µT , respectively (see Lemma 3 in [201] and

Lemma 6 in [205] for more details).

8.2.2.3 Infinite-dimensional Linear Program Reformulation

Hereafter, we will show that the value in (8.12) can be obtained by solving a linear

program on the occupation measure and the final measure, defined in (8.21) and (8.22).

According to the definition of average occupation measure, we have that

E
[∫ T

0
1Xu(x(t))dt

]
=

∫
X0

∫ T

0
1Xu(x(t))dtdµ0

=

∫
X0

µ([0, T ]×Xu | x0)dµ0

= µ([0, T ]×Xu).

(8.24)

Leveraging the above measure-theoretical formulation, the value in (8.12) is equal to

µ([0, T ]×Xu). (8.25)

Subsequently, finding the solution to Problem 13 is equivalent to finding the volume of

the set [0, T ]×Xu, where this volume is measured using the average occupation measure,

instead of the Lebesgue measure. Next, we show that the value of (8.25) can be obtained

by solving the following optimization problem: Given a polynomial g : [0, T ]× X → R,

such that g(t,x) > 0,∀(t,x) ∈ [0, T ]×Xu, consider the following optimization problem

P : sup

∫
gdµ̃

subject to µ̃+ µ̂ = µ

δT ⊗ µT = δ0 ⊗ µ0 + L∗µ

µ, µ̂ ∈M+([0, T ]×X )

µ̃ ∈M+([0, T ]×Xu)

µT ∈M+(X )

(8.26)

171



where the supremum is taken over a tuple of measures (µ̃, µ̂, µ, µT ) ∈M+([0, T ]×Xu)×

M+([0, T ] × X ) ×M+([0, T ] × X ) ×M+(X ). The constraint µ̃ + µ̂ = µ is equivalent

to µ̃ ≤ µ, i.e., the measure µ̃ is dominated by µ. Using duality brackets, we can write

the objective in (8.26) as 〈g, µ̃〉. It follows that (8.26) is a linear program in the decision

variable (µ̃, µ̂, µ, µT ). Denote by sup P the optimal value of P and by max P the supremum

attained. When g ≡ 1, we show below that the optimal value to the above program, if

it exists, is equal to (8.12).

Theorem 37. Let Xu be a compact and semi-algebraic subset of X and B be the Borel

σ-algebra of Borel subsets of [0, T ]×X . Let µ̃∗ ∈M([0, T ]×Xu) be defined by

µ̃∗(S) = µ(S ∩ [0, T ]×Xu),∀S ∈ B. (8.27)

Given a polynomial g : [0, T ] × X → R, if g(t,x) > 0,∀(t,x) ∈ [0, T ] × Xu, then µ̃∗ is

the µ̃-component of an optimal solution to P. Furthermore, sup P = max P =
∫
gdµ̃∗. In

particular, if g ≡ 1, then max P = µ([0, T ]×Xu).

Proof. See Appendix A.7.

As a result of Theorem 37, the solution of P is equal to the expected time in (8.12). In

the next subsection, we consider the Lagrangian dual of P.

8.2.2.4 Dual Infinite-dimensional Program

As mentioned in Section 8.2.2.1, the dual space of M(S) is the Banach space of con-

tinuous functions on S with the sup-norm. Let C+(S) ⊆ C(S) be the set of continuous

functions that are nonnegative on S. Using duality theory, the dual program of (8.26)
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is equal to

D : inf
v,w

∫
v(0,x)dµ0

s.t. w(t,x)− g(t,x) ≥ 0,∀(t,x) ∈ [0, T ]×Xu

− Lv(t,x)− w(t,x) ≥ 0,∀(t,x) ∈ [0, T ]×X

v(T,x) ≥ 0,∀x ∈ X

w(t,x) ≥ 0,∀(t,x) ∈ [0, T ]×X

(8.28)

where the decision variables in the above program are the continuously differentiable

function v(t,x) ∈ C1([0, T ] × X ) and the continuous function w(t,x) ∈ C([0, T ] × X ).

The dual problem D always provides an upper bound on the optimal value of the primal

P. In the sequel, we show that the optimal values of (8.26) and (8.28) are actually equal.

Thus, strong duality holds in this infinite-dimensional linear program.

Theorem 38. Let p? and d? be the optimal values of P and D, respectively. Then,

p? = d?, i.e., there is no duality gap between P and D.

Proof. See Appendix A.7.

Consequently, the value of (8.12) can be obtained by solving (8.26) or (8.28). How-

ever, these two optimization problems are taking arguments from a tuple of measures

or a tuple of continuous functions; hence both programs are hard infinite-dimensional

optimization problems. In the next section, we leverage recent results from the multi-

dimensional moment problem [108] to approximate the solution to (8.26). Furthermore,

we show that it is possible to obtain increasingly tighter bounds on (8.25) by solving a

sequence of semidefinite programs.

8.2.3 Semidefinite and Sum-of-Squares Relaxation

In the previous section, we have shown that (8.12) can be computed by solving an

infinite-dimensional linear program. Although the optimal solutions to P or D provide

exact solutions to Problem 1, it is computationally intractable to solve them. To ad-

dress this issue, in Subsection 8.2.3.2, we will provide a method to approximate the
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optimal solutions to P and D using sequences of semidefinite programs (SDPs) and sum-

of-squares (SOS) programs, respectively. We utilize tools developed in the context of

the multi-dimensional moment problem allowing us to replace the tuple of measures in

P by sequences of moments.

The following observation plays a key role in our approximation scheme. Notice that

the equality constraint in (8.26) is equivalent to

〈v, δT ⊗ µT 〉 = 〈v, δ0 ⊗ µ0〉+ 〈Lv, µ〉 (8.29)

for all v ∈ C([0, T ]×X ). Since the set of polynomials are dense in C([0, T ]×X ) and the

ring R[t,x] is closed under addition and multiplication, (8.29) is equivalent to

∫
X
v(T,x)dµT =

∫
X
v(0,x)dµ0 +

∫
[0,T ]×X

Lvdµ

for all v(t,x) = taxα, (a,α) ∈ N× Nn,
(8.30)

where a ∈ N, α = (α1, · · · , αn) ∈ Nn and xα = xα1
1 xα2

2 · · ·xαnn . Using the above

procedure, the linear constraints in P hold provided that (8.29) holds for all mono-

mial functions v(t,x). A standard relaxation is then to require that (8.29) holds for all

monomials up to a given fixed degree r, i.e., a+ |α| = a+
∑n

i=1 αi ≤ r.

Since v(t,x) is a monomial, the integration of v with respect to a measure µ results

in a moment of µ. Therefore, (8.30) is a linear constraint on the moments of µ0, µ

and µT . In this case, instead of finding a tuple of measures satisfying the constraints

in (8.26), we aim to find (finite) sequences of numbers that satisfy the constraint (8.30).

Moreover, the sequences of numbers are moments of measures µ̃, µ̂, µ, µT . As required

by (8.26), these measures must be supported on certain specified sets. To formalize this

idea, in order to obtain an approximated solution to (8.12), we want to find sequences

of numbers that are moments of the tuple of measures feasible in (8.26).
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8.2.3.1 Riesz Functional

We adopt the notions related to multi-dimensional moment problem introduced in Sec-

tion 6.2.3 from Chapter 6. To better explain this approach, we introduce additional

notions related to the multi-dimensional moment problem.

Given an Rn-valued random variable x ∼ ν and an integer vector α ∈ Nn, the α-

moment of x is defined as E[xα] =
∫
Rn
∏n
i=1 x

αi
i dν. Moreover, we define the order of

an α-moment to be |α|. Finally, a sequence y = {yα}α∈Nn indexed by α is called a

multi-sequence. Given a multi-sequence y = {yα}α∈Nn , we define the linear functional

Ly : R[x]→ R as

f(x) =
∑
α∈Nn

fαxα 7→ Ly(f) =
∑
α∈Nn

fαyα. (8.31)

The introduction of the above functional, often known as the Riesz functional [206], is

convenient to express the moments of random variables. More specifically, let x be an

Rn-valued random variable with corresponding probability measure ν and let f be a

polynomial in x. Then, the expectation of f(x) is equal to

∫
f(x)dν =

∫ ∑
α∈Nn

fαxαdν =
∑
α∈Nn

fαyα = Ly(f)

where yα is the α-moment of x.

According to Putinar’s Positivstellensatz (see Theorem 27 from Chapter 7), whether

an infinite multi-sequence is K-feasible can be characterized using the moment and

localizing matrices associated to this sequence. In the following subsection, we will

leverage this result to construct approximate solutions of P and D.

8.2.3.2 Finite-dimensional approximations

A. SDP relaxation of P

As mentioned above, in the relaxed version of P, we aim to optimize over sequences

of moments of a tuple of measures (µ̃, µ̂, µ, µT ). We use (ỹ, ŷ,y,yT ) to denote the
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moment sequences of the corresponding measures, respectively. On the one hand, since

µ is supported on [0, T ]×X , the elements in the moment sequence y are of the form yα

where α ∈ N×Nn. On the other hand, since µT is supported on X , the elements in yT

are of the form yα where α ∈ Nn. Using the Riesz functional (8.31) on (8.30), we obtain

LyT (v(T, ·))− Ly(Lv) = Ly0(v(0, ·))

for all v(t,x) = taxα and a+ |α| ≤ 2r.

(8.32)

Applying the Riesz functional on the first linear constraint in P, we have that

Lỹ(w) + Lŷ(w) = Ly(w)

for all w(t,x) = taxα and a+ |α| ≤ 2r.

(8.33)

Both equations in (8.33) are linear with respect to the elements in y, ỹ, ŷ,yT ; hence, it

is possible to write them compactly into a linear equation, as follows:

Ar(ỹ, ŷ,y,yT ) = br. (8.34)

From Theorem 27, since supp(µ) ⊆ [0, T ]×X , the moment and localizing matrices of y

with respect to gXi are positive semidefinite for all positive integers r ∈ N. Let

dXui =
deg gXui

2
∀i ∈ [nXu ], dXj =

deg gXj
2

∀j ∈ [nX ]

where deg denotes the degree of a polynomial. Given a fixed positive integer r ∈ N, we
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construct the r-th order relaxation of P, as follows:

Pr : maximize
(ỹ,ŷ,y,yT )

Lỹ(g)

subject to Ar(ỹ, ŷ,y,yT ) = br

Mr(ỹ) � 0, Mr−1(t(T − t), ỹ) � 0

M
r−dXui

(gXui , ỹ) � 0,∀i ∈ [nXu ]

Mr(ŷ) � 0,Mr−1(t(T − t), ŷ) � 0

Mr−dXi
(gXi , ŷ) � 0,∀i ∈ [nX ]

Mr(y) � 0, Mr−1(t(T − t),y) � 0

Mr−dXi
(gXi ,y) � 0,∀i ∈ [nX ]

Mr(yT ) � 0,

Mr−dXi
(gXi ,yT ) � 0,∀i ∈ [nX ].

(8.35)

In this program, the decision variable is the 4-tuple of finite multi-sequences (ỹ, ŷ,y,yT ).

Furthermore, Pr is an SDP and, thus, can be solved using off-the-shelf software. In

addition to relaxing the primal LP P, it is also possible to relax the dual LP D, as shown

next.

B. SOS relaxation of D

To formulate the relaxed program of D, we begin by considering the dual of Pr. Further-

more, as shown in D, the decision variables are v(t,x) ∈ C1([0, T ] × X ) and w(t,x) ∈

C([0, T ]×X ). The relaxed program is obtained by restricting the functions in (8.28) to

polynomials of degrees up to 2r, and then replacing the non-negativity constraint with

sum-of-squares constraints [207]. To formalize this argument, we first need to introduce

some notations.

Given a semi-algebraic set A = {x ∈ Rn | hi(x) ≥ 0, hi ∈ R[x], ∀i ∈ [m]}, we define the
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r-th order quadratic module of A as

Qr(A) =
{
q ∈R[x]r | ∃ SOS {sk}k∈[m]∪{0} ⊂ R[x]r

s.t. q = s0 +
∑
k∈[m]

hksk
}
.

(8.36)

Following a process similar to [208], the relaxed dual program, denoted by Dr, can be

written as follows

Dr : minimize

∫
v(0, ·)dµ0

subject to w − g ∈ Q2r([0, T ]×Xu)

− Lv − w ∈ Q2r([0, T ]×X )

v(T, ·) ∈ Q2r(X )

w ∈ Q2r([0, T ]×X ).

(8.37)

In this program, we optimize over the vector of polynomials (w, v) ∈ R[t,x]2r×R[t,x]2r.

Notice that Pr and Dr provide approximate solutions to P and D, respectively. In the

next theorem, we show that there is no duality gap between Pr and Dr and that the

optimal values of Pr and Dr converge to the optimal values of P and D, respectively, as

r increases.

Theorem 39. Given a positive integer r ∈ N, let p?r and d?r be the optimal values of Pr

and Dr, respectively. If Xu and X have nonempty interior, then p?r = d?r . Furthermore,

d∗r = p?r ↓ p? = d?. (8.38)

Proof. See Appendix A.7.

As a result of this theorem, p?r is a non-increasing function of r and it converges asymp-

totically to p?. From Theorem 37, p? is equal to the expected time the system spends

in the unsafe region, as expressed in (8.12).
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Figure 8-3: Trajectory x(t), where t ∈ [0, 10], of the Van der Pol system (blue curve)
with initial condition x0 = [2, 0]T (red circle). The unsafe region Xu is depicted by the
nonconvex colored set.
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Figure 8-4: This figure shows the exact value (dashed line) and the approximation
(solid line) to (8.12) using Dr with different values of r. The system dynamics under
consideration is the Van der Pol system (8.39), whereas the initial distribution is µ0 =
δ[2,0]> .

8.2.4 Numerical Examples

In this section, we provide a numerical example to illustrate our framework. We com-

plete all numerical simulations using YALMIP [209] (for sum-of-squares programs) and

MOSEK [210] (for semidefinite programs). In particular, we evaluate our framework on

the Van der Pol oscillator—a second order nonlinear dynamical system whose dynamics

is given by

ẋ1 = −x2

ẋ2 = x1 + (x2
1 − 1)x2.

(8.39)

Moreover, we consider the following parameter settings (see Figure 8-3): (i) the final

time is set to be T = 10, (ii) the initial condition is set to be x(0) = x0 = [2, 0]>, and (iii)

the unsafe region is specified by a nonconvex two-dimensional semi-algebraic set Xu =
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{(x1, x2) ∈ R2 | 52(x1 − 0.25)2 − (x2 + 0.5)2 ≤ 1, 0 ≤ x1 ≤ 0.5,−2 ≤ x2 ≤ 1}. To ease

the numerical computations, we adopt proper scaling of the system’s coordinates such

that T and X are normalized to be T = 1 and X = [−1, 1]× [−1, 1], respectively. In this

case, (8.12) cannot be computed analytically. However, through numerical simulation,

we obtain that the Van der Pol oscillator spends (approximately) 0.9446 seconds in the

unsafe region Xu. We demonstrate our upper bounds on this time using Dr with varying

values of r in Figure 8-4.
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Chapter 9

Conclusion

The analysis of the global behavior of networked systems presents the following three

major challenges: (i) analyzing or characterizing the properties of networked systems

generally requires full knowledge of the parameters describing the system’s dynamics,

yet an exact quantitative description of the parameters of the system may not be avail-

able due to measurement errors and/or modeling uncertainties; (ii) retrieving the whole

structure of many real networks is very challenging due to both computation and security

constraints, hence an exact analysis of the global behavior of many real-world networks

is practically unfeasible; (iii) the dynamics describing the interactions between compo-

nents are often stochastic, which leads to difficulty in analyzing individual behaviors in

the network. In this thesis, we have addressed all three challenges using results from

structural systems theory and measure theory, as summarized below.

In the first part of the thesis, we adopted graph-theoretic methods to handle the chal-

lenge brought by inexact models and/or imprecise measurements. Chapter 2 studied

the problem of characterizing structural target controllability in undirected networks

with unknown link weights. We achieved this goal by first characterizing the generic

properties of symmetrically structured matrices. We then derived a necessary and suffi-

cient condition for structural controllability of undirected networks with multiple control

inputs. Based on these results, we provided a graph-theoretic necessary and sufficient

181



condition for structural target controllability. Furthermore, we derived necessary and

sufficient conditions for (symmetric) structural output controllability using graph and

structural systems theory.

In Chapter 3, we have addressed the problem of designing the topology of a networked

dynamical system in order to achieve (general) structural controllability. In particular,

given a system digraph, we have developed an efficient methodology to find the minimum

number of edges that must be added to the digraph to render a structurally controllable

system. As part of our analysis, we have characterized the set of all possible solutions

to this problem, and provided a polynomial-time algorithm to obtain an optimal solu-

tion. Additionally, we have presented scalable algorithms to solve our problem under

additional assumptions that are commonly found in engineering applications. Finally,

we have numerically illustrated our results in the context of random networked systems.

In Chapter 4, we leveraged results provided in Chapter 2 and Chapter 3 to examine

the problem of selecting a set of undirected edges incurring into a minimum total cost

in order to render a (symmetric) structural target controllable system. We presented

a thorough analysis of this problem and showed that obtaining an optimal solution to

the problem under consideration is NP-hard. Motivated by engineering applications, we

also considered two special instances of this problem by imposing extra assumptions on

the topology of the system and/or the cost function. We showed that these two special

cases can be solved efficiently, and proposed polynomial-time algorithms to obtain an

optimal solution. Finally, we demonstrated the validity of our algorithms on particular

system graphs.

In Chapter 5, we studied structural stabilizability—a more general system property

than controllability, in undirected networked dynamical systems. Using the results from

Chapter 2, we proposed a computationally-efficient graph-theoretic method to estimate

the maximum dimension of stabilizable subspace of an undirected network. Furthermore,

we formulated the optimal actuator-disabling attack problem (respectively, optimal re-

covery problem), whose objective is to remove (respectively, add) actuators to minimize

(respectively, maximize) the maximum dimension of stabilizable subspace, respectively.
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We showed that these two problems are NP-hard. Despite this, we developed a (1−1/e)

approximation algorithm for the optimal recovery problem. Finally, we provided graph-

theoretic conditions for structural stabilizability in arbitrary linear structural systems

(i.e., systems without parameter constraints).

In the second part of this thesis, we utilized measure-theoretic techniques to estimate

global properties of a network and to analyze stochastic networked processes. More

specifically, in Chapter 6, we showed that, given enough local information (i.e., subgraph

counts), it is possible to approximate the spectral radius of large-scale networks. In

particular, we developed a novel mathematical framework to upper and lower bound

the spectral radius of a digraph from the counts of a collection of small subgraphs.

By leveraging recent results on the K-moment problem, we proposed a hierarchy of

semidefinite programs of small size allowing us to compute sequences of upper and

lower bounds on the spectral radius of a digraph using, solely, the counts of certain

subgraphs. We illustrated the quality of our bounds using both random digraphs and

real-world directed networks.

In Chapter 7, we analyzed the (exact) stochastic dynamics of the networked SIS, SI, and

SIR epidemic models with heterogeneous spreading and recovery rates. The analysis of

these models are, in general, very challenging since their state space grows exponen-

tially with the number of nodes in the network. A common approach to overcome this

challenge is to apply moment-closure techniques to approximate the exact stochastic

dynamics via ordinary differential equations. However, most existing moment-closure

techniques do not provide quantitative guarantees on the quality of the approximation,

limiting the applicability of these techniques. To overcome this limitation, we have

proposed a novel moment-closure framework which allows us to derive explicit quality

guarantees. This framework is based on recent results from real algebraic geometry

relating the multidimensional moment problem with semidefinite programming. We

illustrated how this technique can be used to derive upper and lower bounds on the

exact (stochastic) dynamics of the SIS, SI, and SIR models. Moreover, we provided a

simplified version of our moment-closure technique to approximate the mean dynamics
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of the SIS model using a linear number of piecewise-affine differential equations. We

illustrated the validity of our results via numerical simulations in the Zachary’s Karate

Club network. Moreover, in the second part of Chapter 7, we introduced a model of

coinfection dynamics in multilayer networks, which we call the non-homogeneous (SIS)L

model. We then studied the problem of simultaneously controlling the dynamics of sev-

eral diseases in an arbitrary multilayer network by distributing vaccines throughout the

network. Since the spread of the diseases is closely related to the eigenvalues of the

adjacency matrices representing network layers, we reformulated our control problem

as a spectral optimization problem and casted these spectral problems as a geometric

program. In addition, we also examined the case when global structural information

about the network is not available. We have proposed a linear program based on Ger-

shgorin’s circle theorem as an efficient relaxed solution to the global problem. Finally,

we illustrated our results with numerical simulations in synthetic networks.

Our results in Chapter 6 and Chapter 7 mainly utilized results in real algebraic geometry

that relates semidefinite programming to the multidimensional moment problem. In

Chapter 8, we further considered two specific application of the multidimensonal moment

problem. In the first application, we applied similar idea as in Chapter 6 to lower-

bound the algebraic connectivity of (connected) undirected graphs using, solely, local

structural information in the form of closed-walks. We provided experiments in both

random and real-world networks to demonstrate the performance of our bounds. In

the second application, we proposed a flexible safety verification notion for nonlinear

autonomous systems described via polynomial dynamics and unsafe regions described via

polynomial inequalities. Instead of verifying safety by checking whether the dynamics

completely avoids the unsafe regions, we consider the system to be safe if it spends

less than a certain amount of time in these regions. This more flexible notion can

be of relevance in, for example, solar-powered vehicles where the vehicle should avoid

spending too much time is dark areas. More generally, this framework can be useful

in those situations where the system is able to tolerate the exposure to a deteriorating

agent, such as excessive heat or radiation, for a limited amount of time. To solve this
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problem, we first proposed an infinite-dimensional LP over the space of measures whose

solution is equal to the (expected) time our (nonlinear) system spends in the (possibly

nonconvex) unsafe regions. We then approximated the solution of the LP through a

monotonically converging sequence of upper bounds by solving a hierarchy of SDPs by

leveraging results from the multidimensional moment problem. Finally, we validated

our approach via a simple example involving a nonlinear Van der Pol oscillator.
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List of Figures

1-1 (a) An examplary graph representation of a linear structural system with

two states and one input. The input is marked by red circle whereas the

states are marked by blue circles. (b) The algebraic representation of the

structural system, where p ∈ R5 is a vector consisting of 5 independent

parameters, denoted using ?i, i = 1, . . . , 5. Each of the parameter in p

represents an unknown weight value of edges in the graph in (a). (c) A

numerical realization of the structural system in which the parameters
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(Ā, B̄), where the red and black vertices represent input and state vertices,

respectively. The black lines and arrows represent edges in G(Ā, B̄);
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{x2, x4, x6} and Y = {y1, y2, y3}. The black and blue vertices are target

vertices XT and output vertices Y, respectively. . . . . . . . . . . . . . . 29
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3-1 In (a), we illustrate a system digraph G({u, x1, x2}, {(u, x1)}) with three

vertices and one edge depicted in black. The goal is to find the smallest

subset of state edges (depicted by red edges) to ensure structural con-

trollability. Let us consider the iterative strategy described in Subsection

3.3.3. In (b), we depict a possible solution to the first step described in

Case I, i.e., the edge (x2, x2) suffices to satisfy Theorem 5-(b). In (c), we

depict a possible solution to the second step described in Case II when

the system digraph considered is the one depicted in (b). In contrast, the

edge (x1, x2) suffices to satisfy Theorem 5-(a), resulting in the system

digraph in (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3-2 In (a), we illustrate a system digraph G({u, x1, x2, x3}, {(u, x1)}) in black.

The goal is to find the smallest subset of state edges (depicted by red)

to ensure structural controllability. Let us consider the iterative strategy

described in Subsection 3.3.3. In (b), we depict a possible solution to the

first step described in Case II. In (c), we depict a possible solution to the

second step, which was computed by performing the solution described

in Case I when the system digraph considered is the one depicted in (b).

In contrast, the edge (x2, x3) suffices to satisfy Theorem 5-(b), resulting

in the system digraph in (d). . . . . . . . . . . . . . . . . . . . . . . . . 38
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3-3 This figure provides an illustration of Algorithm 1. All vertices (blue

or black), together with all black edges, form the initial system digraph

G(Ā, B̄). The black vertices, except the input vertex u, constitute the set

of reachable state vertices R1 (enclosed by the black dashed ellipsoid).

Blue vertices constitute the set of unreachable state vertices N . The

unreachable state source SCCs, N1 and N2, are contained in red dashed

squares. In Figure (a), we depict one possible result for Algorithm 1. In

the initialization step, our algorithm initializes SB as the set containing

edge e1 only. Subsequently, after e1 is added to SB, all the states reachable

from N1 become reachable (we encircle these reachable states by a blue

dashed ellipsoid in Figure (a)). Afterwards, in the FOR loop, edge e2

in Figure (a) is added to SB (in Step 5 of Algorithm 1), resulting in

a digraph in which all vertices are reachable from the input node. An

alternative output of Algorithm 1 is plotted in Figure (b). Notice that

both in Figures (a) and (b), all vertices are reachable after adding two

red edges. Therefore, SB = {e1, e2} and S′B = {e′1, e′2} are two possible

sets of bridging edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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3-4 This figure presents an example illustrating Algorithm 2. The black ver-

tices and edges in (a) form the initial system digraph G(Ā, B̄). In this

case, N = {x2, x3, x4} is the set of unreachable state vertices. More-

over, there is only one unreachable source SCC, whose vertex set is

N1 = {x2, x3}. The black vertices and edges in (b) constitute the original

system bipartite graph B(Ā, B̄), while the blue vertex γ1 represents a slack

variable associated with N1. In addition, the blue dashed edges {γ1, x2}

and {γ1, x3} together constitute EI . The minimum-weighted maximum

matching M ′ of Bw is depicted using red edges in (c). By removing

{γ1, x
−
2 } ∈ EI , we have that M = {{u, x−1 }, {x

+
2 , x

−
3 }, {x

+
3 , x

−
4 }} is a max-

imum matching of B(Ā, B̄). In (d), we depict in red the edges from the

system digraph G(Ā, B̄) associated with those in the maximum match-

ing M. Notice that x2 is a right-unmatched vertex of M and it is in N1;

hence, M is a maximum matching attaining the USAN of G(Ā, B̄). . . . 43

3-5 This figure presents two examples where different maximum matchings

lead to sets of feasible edge-addition configurations with different car-

dinalities. The black vertices and edges in (a) form the initial system

digraph G(Ā, B̄). The red edges in (c) and (e) constitute two different

maximum matchings associated with B(Ā, B̄). The red edges in (b) and

(d) are direct graph representations of the edges determined by the maxi-

mum matchings in (b) and (d), respectively. The edge-set Ẽ2 = {(x1, x2)}

(depicted by blue dashed arrows in (d)) is a feasible edge-addition configu-

ration, since the addition of (x1, x2) ensures both conditions in Theorem 5.

In contrast, in Fig. (b) we also need to add edge (x2, x2) (in addition to

(x1, x2)) to ensure that Theorem 6-(b) holds, which leads to a feasible

edge-addition configuration given by Ẽ1 = {(x1, x2), (x2, x2)}. Thus, Ẽ2

is an optimal edge-addition configuration with cardinality 1 while Ẽ1 is not. 44
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3-6 System digraph G(Ā, B̄) containing a single input vertex u and ten state

vertices {x1, . . . , x10} (depicted in black dots). Black arrows correspond

to the edges of G(Ā, B̄). The dashed blue ellipsoid contains all the reach-

able state vertices, i.e., R1 = {x1, . . . , x4}, whereas each red dashed

square contains an unreachable source SCC, whose vertex sets are N1 =

{x5}, N2 = {x10}, and N3 = {x7, x8}, respectively. . . . . . . . . . . . . 48

3-7 This figure shows a maximum matching M̄ obtained using Step 2 in

Algorithm 8. In (a), we depict the system bipartite graph associated

with the pair (Ā, B̄), whose edges are depicted in black and red (edges

in red are those in the maximum matching M̄). In (b), we depict in red

the edges from the system digraph G(Ā, B̄) associated with those in the

maximum matching M̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3-8 In this figure, we plot the evolution of the average value of p∗ as c and

pb vary. In (a), we fix the value of c and show the evolution of p∗

versus pb, when pb ranges from 0.1 to 0.8 with step size 0.1. The red,

blue, and black lines correspond to c = 0.1, c = 1.5, and c = 3, respec-

tively. In (b), we plot the evolution of p̄∗ when c varies in the interval

c ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.5, 2, 3, 4}, while fixing pb. The red, blue, and

black lines show the value of p̄∗ when pb = 0.1, pb = 0.5, and pb = 0.8,

respectively. In both figures, the error bars represent the standard devi-

ation of p∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4-1 Illustrations of Theorem 11. Consider symmetrically structured pairs

(Ā1, B̄) and (Ā2, B̄) whose mixed graph representations are depicted in

(a) and (c), respectively. In each subfigure, the black and red vertices

are state and input vertices, respectively. For the structural pair (Ā1, B̄),

the second condition in Theorem 11 is satisfied, and an optimal solution

is depicted in (b). For the structural pair (Ā2, B̄), the first condition in

Theorem 11 is satisfied, and an optimal solution is shown in (d). . . . . 58
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4-2 Non-optimality of applying the algorithm in [58] to Problem 5. Con-

sider a structural pair (Ā, B̄) and associate it with a digraph G(Ā, B̄) =

(X ∪ U , E(Ā) ∪ EU ,X ), depicted in subfigure (a). In order to obtain a set

of a minimum total number of directed edges in G(Ā) to ensure struc-

tural controllability, we execute the algorithm in [58]. At the first step,

the algorithm selects a set of edges to form a minimum spanning tree,

depicted by the blue edges in (b); at the second step, it returns the di-

rected edges to be added such that the Condition-2) in Theorem 1 is

satisfied, depicted by the red edges in (c). We denote by the set E the

solution returned by the algorithm in [58], and depict the mixed graph

G = (X ∪ U , {{xi, xj} : (xi, xj) or (xj , xi) ∈ E}, EU ,X ) in (d). Comparing

with Figure 4-1, we see that G is not an optimal solution to Problem 5. 59

4-3 Illustrations on the Class-0, 1 and 2 of unreachable T-SCC. In each sub-

figure, the red and black vertices are input and state vertices, respectively.

In (a), let T = {i}6i=1. G{x5,x6} is a Class-0 T-SCC because the maximum

number of right-unmatched target vertices that can be reduced by adding

an edge making G{x5,x6} reachable is 0 (as shown by the red edge in (b)).

In (c), let T = {i}6i=1. G{x5,x6} is a Class-1 T-SCC because the maxi-

mum number of right-unmatched target vertices that can be reduced by

adding an edge, making G{x5,x6} reachable, is 1 (as shown by the red edge

in (d)). In (e), let T = {i}7i=1. G{x5,x6,x7} is a Class-2 T-SCC because

we can reduce the total number of right-unmatched target vertices by 2

after adding an edge, making G{x5,x6,x7} reachable (as shown by the red

edge in (f)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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4-4 Illustrations of Theorem 13. In each subfigure, the red and black ver-

tices are input and state vertices, respectively. We consider a structural

pair (Ā, B̄), where Ā ∈ {0, ?}5×5 is symmetrically structured, and depict

its mixed graph representation in subfigure (a). Let the target set be

T = {1, 2, · · · , 5}. There are q2 = 1 unreachable Class-2 T-SCCs, and

there are 2 right-unmatched target vertices with respect to a maximum

matching in the corresponding bipartite graph of G(Ā, B̄). However,

there is no reachable right-unmatched target vertex, which implies t = 1

in the lower bound (4.4) of Theorem 13. Therefore, we need to add at

least ceil(1 + max(
2− 0− (2× 1− 1)

2
, 0)) = 2 edges to ensure structural

target controllability. In subfigure (b), the blue undirected edges are the

newly added edges which ensure structural target controllability, consti-

tuting an optimal solution to Problem 6. . . . . . . . . . . . . . . . . . . 64

4-5 In each subfigure, the red vertex is the input vertex and black vertices

are state vertices. The subfigure (a) is the mixed graph representation

G(Ā, B̄) of (Ā, B̄); The subfigure (b) is the mixed graph representation

G(Ā∗1, B̄) of (Ā∗1, B̄), where the red edges is the ’newly added’ edges

compared with (a); The subfigure (c) is the mixed graph representation

G(Ā∗2, B̄) of (Ā∗2, B̄). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5-1 In this figure, we depict the structure of G(Ā, B̄). The red vertex labeled

by u1 and black vertices labeled by x1, . . . , x11 are the input vertex and

state vertices, respectively. The black arrows represent the edges from

input vertex to state vertices, as well as edges between state vertices. . . 82

5-2 In this figure, we depict the digraph G(Ā, [B̄, B̄Ucan ]). We use red and

black vertices to represent input vertices and state vertices, respectively.

The black and red arrows represent are the edges in EX ,X ∪ E{u1},X and

edges in EUcan,X , respectively. . . . . . . . . . . . . . . . . . . . . . . . . 83
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6-1 This table shows the values of η(Ĝ, k), defined in Theorem 21, for k ≤ 5.

The value k indexes the powers of A in the rows, while the columns of

the table are indexed by all non-isomorphic strongly-connected subgraphs

of order at most 5 involved in the computation of the traces up to the

fifth power. For example, from the second row of the table, we infer that

Tr(A3) equals 3 times the number of directed triangles (second column

in the table). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6-2 In (a), we plot the complex eigenvalues of A for an Erdős-Rényi ran-

dom directed graph with n = 500 vertices and edge probability 0.1.The

spectral radius of A is λn ≈ 50, whereas ωmax < 7. In (b), we plot the

complex eigenvalues of A for a real social network from Google+ [171].

The spectral radius of λn ≈ 21, whereas ωmax < 1.5. . . . . . . . . . . . 105

6-3 This figure shows the relationship between Tr(A4
I) and the counts of cer-

tain subgraphs in G. More specifically, the traces in the figure are equal

to sums of counts of certain subgraphs multiplied by the coefficients in-
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of in-degrees. In (d), to calculate Tr((A>A)2), we use the sum of out-

degrees. Since Tr((AA>)2) = Tr((A>A)2), we can use either sum of

in-degrees or out-degrees to obtain Tr((AA>)2). . . . . . . . . . . . . . . 107
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Chung-Lu random digraph. In (b), we show the normalized lower (in

blue) and upper bounds, where the red and green lines show the upper

bound obtained using Theorem 5 and Algorithm 1, respectively. . . . . . 120

6-6 This figure shows the eigenvalue spectrum of the digraph representing

flights between airports in the U.S. The x-axis and y-axis are the real

and imaginary parts of the eigenvalues of A, respectively. . . . . . . . . 121
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7-1 Illustration of the SIS spreading model on a directed graph. In the left

subfigure, the black arrows represent the edges in the digraph, whereas

the red and blue circles represent the infected and susceptible nodes,

respectively. In the right subfigure, we show the possible transitions be-

tween states of a node i. The variable Yij represents the event that an

in-neighbor j of i is infected. . . . . . . . . . . . . . . . . . . . . . . . . 123
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Rényi, and (b) Chung-Lu random graph computed using Theorem 36

with varying r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8-3 Trajectory x(t), where t ∈ [0, 10], of the Van der Pol system (blue curve)

with initial condition x0 = [2, 0]T (red circle). The unsafe region Xu is

depicted by the nonconvex colored set. . . . . . . . . . . . . . . . . . . . 179

8-4 This figure shows the exact value (dashed line) and the approximation

(solid line) to (8.12) using Dr with different values of r. The system

dynamics under consideration is the Van der Pol system (8.39), whereas

the initial distribution is µ0 = δ[2,0]> . . . . . . . . . . . . . . . . . . . . . 179

A-1 Example of the construction of G(X ∪ U , Eu, EU ,X ) from sets US = {S`}p`=1

in the proof of Theorem 9. Suppose we have US = {1, 2, 3, 4, 5}, S1 =

{1, 2, 3},S2 = {2, 4},S2 = {3, 5},S4 = {4, 5}. Then X = {xi}11
i=1 ∪

{si}4i=1, T = {1, 2, . . . , 10} and U = {u1} are the set of state vertices,

target set and the set of input vertex, respectively. . . . . . . . . . . . . 214

195



A-2 Example of the construction of G(X ∪ U , EX ,X ∪ EU ,X ) in the proof of

Theorem 17. Suppose we have a finite universe set US =
⋃4
`=1 S`, where

US = {1, 2, 3, 4, 5},S1 = {1, 2, 3},S2 = {2, 4},S3 = {3, 5},S4 = {4, 5}.

From the given set US =
⋃4
`=1 S`. We construct the state vertex set X =

{xi}10
i=1, and the input vertex set U = {ui}4i=1. The black and red vertices

in Figure A-2 are the state and input vertices in G(X ∪ U , EX ,X ∪ EU ,X ),

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

196



List of Tables

4.1 Special cases of Problem 4 and their computational complexity. . . . . . 56

6.1 This table shows lower bound on the spectral radius of various networks

computed using Theorem 23 (fifth column) and Algorithm 8 (last column).118

6.2 This table shows upper bounds computed using Theorem 24 (column 2,

denoted by ρ?3), Theorem 26 (column 3, denoted by p?3), and Algorithm 8

(last column), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.1 This table shows the true algebraic connectivity (column 2, denoted by

λ2), the first value of r at which λ?r > 0 (column 3), and lower bounds on

λ2 computed using Theorem 36 (column 4, denoted by λ?r), respectively. 164

197



Appendix A

Appendix

A.1 Proof of the results in Chapter 2

A.1.1 Proof of Lemma 1 and related results

Before we proceed to the proof of Lemma 1, we introduce Proposition 2, which lays the

foundation for the proof of Lemma 1.

Proposition 2 ([30, §1.2]). Given a (symmetrically) structured matrix M̄ ∈ {0, ?}n×m

and B(S1,S2, ES1,S2), where S1 = {v1, . . . , vm}, S2 = {v′1, . . . , v′n}, and ES1,S2 is defined

by ES1,S2 = {{vi, v′j} : [M̄ ]ji 6= 0, vi ∈ S1, v
′
j ∈ S2}, then t–rank(M̄) = n if and only if

|NB(S)| ≥ |S| for all S ⊆ S2.

Proof of Lemma 1. First, we show the sufficiency of the theorem. Notice that the

generic-rank of CT Ā equals k, if and only if, there exists a k-by-k non-zero minor in

CT Ā; hence, it suffices to find that minor. Since |N (S)| ≥ |S|, ∀S ⊆ XT , there exists

k entries that lie on distinct rows and distinct columns of CT Ā according to Proposi-

tion 2. As a result, we can select rows indexed by T = {i1, . . . , ik} and columns indexed

j1, · · · , jk in Ā such that {[Ā]i`j`}k`=1 lies on distinct rows and distinct columns. Next,

we consider the following two cases.

On one hand, if {j1, . . . , jk} = {i1, . . . , ik}, then M = CT ĀC
>
T is a square submatrix of
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Ā. We consider a particular numerical realization Ã of Ā, as follows. Let [Ã]ij 6= 0 for

all (i, j) /∈ {(i`, j`) : ` ∈ [k]}, [Ã]ij = [Ã]ji, and [Ã]ij = 0 otherwise. Subsequently, by

computing the determinant , det(CT ÃC
>
T ) = sgn(σ1)Πk

`=1[Ã]i`j` + sgn(σ2)Πk
`=1[Ã]j`i` ,

where sgn(σ1) and sgn(σ2) are the signatures of the permutations σ1 = {(i`, j`) : ` ∈ [k]},

and σ2 = {(j`, i`) : ` ∈ [k]}, respectively. Notice that if sgn(σ1) = sgn(σ2), then it follows

that det(CT ÃC
>
T ) 6= 0. Furthermore, if {Ã : det(CT ÃC

>
T ) = 0} is a proper variety, we

have that M admits an k-by-k non-zero minor generically. Thus, the generic-rank of

CT Ā equals to k.

On the other hand, when {j1, . . . , jk} 6= {i1, · · · , ik}, it sufficies to show there exists

a numerical realization Ã such that det([Ã]j1,··· ,jki1,··· ,ik ) 6= 0. We consider a numerical re-

alization Ã by assigning distinct real values to ?-entries corresponding to {[Ā]i`j`}k`=1

while keeping [Ã]ij = [Ã]ji, and assigning 0 otherwise. Without loss of generality, we

can permute {`}k`=1 such that for each [Ā]i`r j`r ∈ {[Ā]i`r j`r }
p
r=1, [Ā]j`r i`r is not in ma-

trix [Ā]j1,··· ,jki1,··· ,ik , and for each [Ā]i`r j`r ∈ {[Ā]i`r j`r }
k
r=p+1, [Ā]j`r i`r is in matrix [Ā]j1,··· ,jki1,··· ,ik .

We declaim that there is only one nonzero entry in either the i`rth row or j`rth col-

umn, ∀r ∈ [p], otherwise it contradicts that {[Ā]i`j`}k`=1 are in distinct rows and distinct

columns of [Ā]. Thus, we compute det([Ã]j1,··· ,jki1,··· ,ik ),

det([Ã]j1,··· ,jki1,··· ,ik ) = (

p∏
r=1

[Ã]i`r j`r ) · det([Ã]
j`p+1

,··· ,j`k
i`p+1

,··· ,i`k
) 6= 0, (A.1)

where det([Ã]
j`p+1

,··· ,j`k
i`p+1

,··· ,i`k
) 6= 0 is true because {i1, · · · , ik} = {j1, · · · , jk}. Thus, there

exists numerical realization such that det([Ã]j1,··· ,jki1,··· ,ik ) 6= 0. Next, we show the necessity

of the theorem by contrapositive. We assume that there exists S ⊆ XT , such that

|N (S)| < |S| . Then, by Proposition 2, there does not exist k entries that lie on the

distinct rows and distinct columns of CT Ā, which implies g–rank(CT Ā) < k.

A.1.2 Proof of Corollary 1

Proof. Suppose |N (S)| ≥ |S|, ∀S ⊆ XT , then, by Proposition 2, there exist k entries,

{[Ā, B̄]i`j`}k`=1, such that they are all ?-entries which lie on distinct rows and distinct

columns of [Ā, B̄]. Among those k entries, suppose {[Ā, B̄]i`j`}
q
`=1 are in columns of Ā,
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and {[Ā, B̄]i`j`}k`=q+1 are in the columns of B̄. By Lemma 1, there exists a numerical

realization Ã, such that det([Ã, B̃]
j1,...,jq
i1,...,iq

) 6= 0. Since B̄ is a structured matrix, there

exists a numerical realization B̃ such that det([Ã, B̃]
jq+1,...,jk
iq+1,...,ik

) 6= 0 Hence, there exists a

numerical realization [Ã, B̃] with

det([Ã, B̃]j1,...,jki1,...,ik
) = det([Ã, B̃]

j1,...,jq
i1,...,iq

) det([Ã, B̃]
jq+1,...,jk
iq+1,...,ik

)

6= 0,

which implies that g–rank(CT
[
Ā, B̄

]
) = k.

A.1.3 Proof of Lemma 2

We introduce Proposition 3, Proposition 4 and Lemma 16 to support the proof of

Lemma 2.

Proposition 3 ([211, §2.1]). Let ϕ1(s) and ϕ2(s) be polynomials in s with ϕ1(s) =∑n1
i=0 ais

n1−i, and ϕ2(s) =
∑n2

i=0 bis
n2−i, respectively. Let R(ϕ1, ϕ2) be defined as

R(ϕ1, ϕ2) = det





an1 an1−1 ··· a0 0 ··· 0
0 an1 ··· a1 a0 ··· 0

...
...

...
...

...
...

...
0 0 ··· an1 an1−1 ··· a0

hline0 0 ··· ··· b0
...

...
...

...
...

0 bn2 ··· b1 b0 ··· 0
bn2 bn2−1 ··· b0 0 ··· 0




. (A.2)

If an1 6= 0 and bn2 6= 0, then ϕ1(s) and ϕ2(s) have a nontrivial common factor if and

only if the R(ϕ1, ϕ2) = 0.

Proposition 4 (Hoffman-Wielandt Theorem [168, §6.3]). Given n× n symmetric ma-

trices A and E, let λ1, . . . , λn be the eigenvalues of A, and λ̂1, . . . , λ̂n be the eigenvalues

of A+ E. There is a permutation σ(·) of the integers {1, . . . , n} such that

n∑
i=1

(λ̂σ(i) − λi)2 ≤ ‖E‖2F , (A.3)

where ‖E‖F =
√

tr(EE>).

Lemma 16. Let Ā be an n × n symmetrically structured matrix, and let G(Ā) =

{X , EX ,X } be the digraph associated with Ā. Assume t–rank(Ā) = k, and denote
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{[Ā]i`j`}k`=1 as the k entries that lie on distinct rows and distinct columns. We define

S = {xi1 , . . . , xik} ⊆ X . Then, GS can be covered by disjoint cycles.

Proof of Lemma 16. We approach the proof by contradiction. Suppose GS cannot be

covered by disjoint cycles, then at least one vertex xi ∈ S can only be covered by

cycles intersecting with other cycles in GS , which implies that there does not exist k

edges in which no two edges share the same ’tail’ or ’head’ vertex in G(Ā), i.e., there

does not exist k entries that lie on distinct rows and distinct columns of Ā, which, by

Proposition 2, contradicts t–rank(Ā) = k.

Proof of Lemma 2. We expand the characteristic polynomial of a matrix Ã as

det(sI − Ã) = sn + an−1s
n−1 · · ·+ an−ks

n−k + · · ·+ a0. (A.4)

Besides, we have

aq = (−1)n−q
∑

1≤k1<···<kn−q≤n

det([Ã]
k1,...,kn−q

k1,...,kn−q
), (A.5)

where q = 0, 1, . . . , n − 1. Since t–rank(Ā) = k, there exists a numerical realization

Ã and a set of indexes, {i1, . . . , ik} ⊆ [n], such that det([Ã]i1,...,iki1,...,ik
) 6= 0. Furthermore,

V0 := {pÃ ∈ RnĀ : an−k = 0} is a proper variety. Since the maximum order of principle

minor is at most the term rank of a matrix, we have an−k−1 = · · · = a0 = 0. Thus, to

characterize nonzero eigenvalues, we define the polynomial ϕÃ(s) as

ϕÃ(s) = sk + an−1s
k−1 + · · ·+ an−k. (A.6)

In the rest of the proof, we show that there exists a numerical realization pÃ ∈ V
c

0 such

that Ã has k non-zero simple eigenvalues. Since t–rank(Ā) = k, we define the set S as

in Lemma 16. By Lemma 16, there exist disjoint cycles C1, . . . , Cl covering GS . Let us

denote by Ci the i-th cycle in {C1, . . . , Cl}. Moreover, without loss of generality, we let

the length of cycle Ci be either |Ci| = 2q, or |Ci| = 2q + 1, for some q ∈ N. Note that

by definition, there is a one-to-one correspondence between the edge in G(Ā) and the ?-

entry in Ā. From this observation, we denote by Āi ∈ {0, ?}|Ci|×|Ci| the square submatrix

formed by collecting rows and columns corresponding to the indexes of vertices in VCi of

the cycle Ci. We let all the ?-entries of Ā be zero, except for ?-entries corresponding to
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edges in {ECi}li=1. Hence, there exists a permutation matrix P and numerical realization

Ã, such that PÃP−1 is a block diagonal matrix,

PÃP−1 =



Ã1 0 · · · 0 0

0 Ã2 · · · 0 0

...
...

. . .
...

...

0 0 · · · Ãl 0

0 0 · · · 0 0


. (A.7)

If |Ci| = 2q, we can assume Ci = (xi1 , xj1 , xi2 , xj2 , . . . , xiq , xjq , xi1) without loss of gener-

ality. Since GVCi is a subgraph of the digraph G(Ā) associated with the symmetrically

structured matrix Ā, there exist q disjoint cycles of length-2 covering GVCi , i.e., cycles

(xi1 , xj1 , xi1), (xi2 , xj2 , xi2), . . . , (xiq , xjq , xiq). We assign distinct nonzero weights to ?-

entries of Āi that correspond to edges in the q cycles of length-2, and assign zero weights

to other ?-entries in Āi. As a result, we have

Ãi =


0 ai1j1

· · · 0 0

ai1j1
0 · · · 0 0

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

0 0 · · · 0 aiqjq

0 0 · · · aiqjq 0

 ,

where ai1j1 , . . . , aiqjq are q nonzero distinct weights. Thus, Ãi has 2q simple nonzero

eigenvalues.

If |Ci| = 1, then the eigenvalue of Ãi ∈ R1×1 can be placed to any value. If |Ci| = 2q+ 1

and q > 0, then there are 2q vertices in Ci that can be covered by q cycles of length-2, and

one vertex that cannot be covered by any length-2 cycle in a vertex-disjoint way in GVCi .

Assign distinct nonzero weights to ?-entries corresponding to the q cycles of length-2,

and zero to other ?-entries in Āi. As a result, the constructed numerical realization, Ãi,

has 2q nonzero simple eigenvalues and one zero eigenvalue. Denote by λj(Ãi) the jth

eigenvalue of Ãi, j ∈ {1, . . . , |Ci|}.

By Proposition 4, given a sufficiently small ε > 0, ∃δ > 0 and permutation σ(·) of integers

{1, . . . , |Ci|}, such that for two numerical realizations of Āi: Ãi and Ãip, if ||Ãip−Ãi||F <

δ, then max{|λσ(j)(Ãip)−λj(Ãi)|} < ε. Perturb ?-entries of Ãi corresponding to edges in
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ECi , such that Ãip, which is derived by this perturbation of Ãi, satisfies ||Ãip−Ãi||F < δ.

Moreover, since t–rank(Āi) = 2q + 1, by Lemma 1, g–rank(Āi) = 2q + 1. The above

analysis shows that we can perturb Ãi, such that rank(Ãip) = 2q + 1, and

min
j 6=r,j,r∈{1,...,|Ci|}

|λj(Ãip)− λr(Ãip)| >

min
j 6=r,j,r∈{1,...,|Ci|}

|λj(Ãi)− λr(Ãi)| − 2ε.

It implies that there exists Ãip which has 2q+1 nonzero simple eigenvalues. Notice that

Ãip is also a numerical realization of Āi. Hence, for either |Ci| = 2q, or |Ci| = 2q + 1,

there exists a numerical realization Ãi such that Ãi has |Ci| nonzero simple eigenvalues.

Also, there exists Ã that has
∑l

i=1 |Ci| = k nonzero simple eigenvalues.

Denote by ϕ′
Ã

the derivative of ϕÃ with respect to λ. If pÃ ∈ V
c

0 , and Ã has repeated

nonzero modes, then ϕÃ and ϕ′
Ã

have a common nontrivial zero (i.e., by Proposition 3,

R(ϕÃ, ϕ
′
Ã

) = 0). Define V1 = {pÃ ∈ RnĀ : an−k = 0 or R(ϕÃ, ϕ
′
Ã

) = 0}, where an−k = 0

and R(ϕÃ, ϕ
′
Ã

) = 0 are both polynomials of ?-entries of Ā. Since we have shown that

there exists Ã which has k nonzero simple eigenvalues, i.e., ∃pÃ ∈ RnĀ such that an−k 6=

0 and R(ϕÃ, ϕ
′
Ã

) 6= 0, we conclude that V1 is proper.

Remark 20. To characterize the generic rank of [Ā, B̄], which is crucial in the deriva-

tion of Lemma 3, we should consider the proper variety in parameter space RnĀ+nB̄ .

Since each ?-entry of Ā is independent of those in B̄, V1 is also a proper variety in

RnĀ+nB̄ . Let us redefine V1 as

V1 = {[pÃ,pB̃ ] ∈ RnĀ+nB̄ : an−k = 0 or R(ϕÃ, ϕ
′
Ã

) = 0}. (A.8)

A.1.4 Proof of Lemma 3

We first introduce Lemma 17 in support of proving Lemma 3.

Lemma 17. Consider an irreducible structural pair (Ā, B̄), where Ā ∈ {0, ?}n×n is a

symmetrically structured matrix with t–rank(Ā) = k. Let V1 ⊂ RnĀ+nB̄ be defined as in

(A.8). There exists a proper variety V2 ⊂ RnĀ+nB̄ such that if [pÃ,pB̃] ∈ V c
1 , then there

exists a non-zero uncontrollable mode of Ã if and only if [pÃ,pB̃] ∈ V2.
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Sketch of Proof of Lemma 17. We will first prove that V2 exists. Suppose [pÃ,pB̃] ∈ V c
1 ,

by a similar reasoning as in Lemma 2, all the k nonzero eigenvalues of Ã are simple. Let

λ be a nonzero eigenvalue of Ã, and ϕÃ(s) be defined as in (A.6), then we have,

ϕÃ(λ) = λk + an−1λ
k−1 + · · ·+ an−k = 0. (A.9)

Let us further assume that (λ, v) is an uncontrollable mode of Ã; in other words,

v>Ã = λv>, v>B̃ = 0. (A.10)

Since all the nonzero eigenvalues λ are simple, recall the fact in [35] that the left eigen-

vector v> equals (apart from a constant scalar) any of the nonzero row of the adjugate

matrix adj(λI − Ã). Hence,

adj(λI − Ã)B̃ = 0n×m. (A.11)

Equations (A.9) and (A.11) imply that the two polynomials (A.12) and (A.13) have a

common zero λ, namely,

ϕÃ(s) = sk + an−1s
k−1 + · · ·+ an−k = 0, (A.12)

ψÃ,B̃(s) = tr([adj(sI − Ã)B̃][adj(sI − Ã)B̃]>) = 0. (A.13)

The variety V2 is defined as follows,

V2 = {[pÃ,pB̃ ] ∈ RnĀ+nB̄ : R(ϕÃ, ψÃ,B̃) = 0}, (A.14)

where R(ϕÃ, ψÃ,B̃) = 0 is a polynomial of the ?-entries in Ā and B̄. The properness of

V2 can be shown by contradiction by adapting the proof in [35, Theorem 2]. Conversely,

suppose [pÃ,pB̃] ∈ V2∩V c
1 , by the definition of V1 and V2, ϕÃ and ψÃ,B̃ have a common

zero λ 6= 0. Since λ is a zero of ϕÃ, λ is also an eigenvalue of Ã, which is an uncontrollable

eigenvalue.

Proof of Lemma 3. Define V = V1 ∪ V2, where V1 and V2 are defined as in (A.8) and

(A.14), respectively. We can prove V1 is proper by a similar reasoning as the one in

Lemma 2. By Lemma 17, V2 is proper. Hence, V = V1 ∪ V2 is proper. If [pÃ,pB̃] ∈ V c,

Ã has k nonzero simple controllable modes.
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A.1.5 Proof of Theorem 1

We first introduce Lemma 18, which lays the foundation for the proof of Theorem 1.

Lemma 18. Consider a structural pair (Ā, B̄), and a target set T with the corresponding

state vertex set XT in G(Ā, B̄). We define CT according to (2.4). Given a numerical

realization (Ã, B̃), we define controllability matrix Q(Ã, B̃) as in Definition 1. Then,

for any numerical realization (Ã, B̃), we have that rank(CTQ(Ã, B̃)) ≤ |N (XT )|.

Proof of Lemma 18. Consider a numerical realization (Ã, B̃), from the Cayley-Hamilton

theorem, we have that

rank(CT [B̃, ÃQ(Ã, B̃)]) = rank(CT [B̃, ÃB̃, . . . , Ãn−1B̃, ÃnB̃])

= rank([CTQ(Ã, B̃), CT Ã
nB̃])

= rank(CTQ(Ã, B̃)).

(A.15)

In G(Ā, B̄), let m1,m2 be the number of input, state vertices in N (XT ), respectively.

Then, (A.15) yields,

rank(CTQ(Ã, B̃)) = rank(CT [B̃, ÃQ(Ã, B̃)])

≤ rank(CT B̃) + rank(CT ÃQ(Ã, B̃))

≤ m1 + min(rank(CT Ã), rank(Q(Ã, B̃)))

≤ m1 +m2

= |N (XT )|.

This completes the proof.

Proof of Theorem 1. To show the necessity of the theorem, suppose that there exists a

vertex xi ∈ X that is not input-reachable, then the i-th row of controllability matrix

will be zero row, which implies that rank(Q(Ã, B̃)) < n, for any numerical realization

of the pair (Ā, B̄). On the other hand, suppose there exists a set S ⊆ X , such that

|N (S)| < |S|, then by Lemma 18, rank(Q(Ã, B̃)) < n, for any numerical realization of

the pair (Ā, B̄). Hence, the necessity is proved.

To show the sufficiency, we proceed as follows. First, since |N (S)| ≥ |S|, ∀S ⊆ X , it

follows from Corollary 1 that g–rank([Ā, B̄]) = n. Because all the state vertices are
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input-reachable, (Ā, B̄) is irreducible. If we denote the term-rank of Ā as k, then by

Lemma 3, there exists a proper variety V ⊂ RnĀ+nB̄ such that, if [pÃ,pB̃] ∈ V c then

Ã has k nonzero, simple and controllable modes. Let λ be an eigenvalue of Ã. On one

hand, if λ 6= 0, then λ is controllable by Lemma 3. On the other hand, if λ = 0,

since g–rank([Ā, B̄]) = n, then there exists a proper variety W ⊂ RnĀ+nB̄ , such that if

[pÃ,pB̃] ∈ W c ∩ V c, then rank([Ã, B̃]) = n. As a result, λ = 0 is controllable by the

eigenvalue PBH test. Since all the modes of Ã are controllable generically, (Ā, B̄) is

structurally controllable.

A.1.6 Proof of Theorem 2

Proof. The necessity of Conditions 1) and 2) can be proved in a similar approach as

the proof in Theorem 1. What remains to be shown is their sufficiency. It suffices to

show that Conditions 1) and 2) result in that generically the left null space of target

controllability matrix is trivial.

Suppose there exists an input-unreachable state vertex xi ∈ X \XT . Since all the vertices

in XT are input-reachable, for ∀xj ∈ XT , there is no path from xj to xi, and there is

also no path from xi to xj due to the symmetry in G(Ā). This implies in model (2.2)

that the ith state has no impact on the dynamics of T corresponding states. Omitting

the ith state from the system will not change the dynamics of T corresponding states.

Hence, we could assume that (Ā, B̄) is irreducible. By Lemma 3, there exists a proper

variety V ⊂ RnĀ+nB̄ , such that if [pÃ,pB̃] ∈ V c, then all the nonzero modes of Ã are

controllable. In the rest of the proof, we assume [pÃ,pB̃] ∈ V c. Denote by e1, . . . , el the

left eigenvectors corresponding to zero modes of Ã, and el+1, . . . , en the left eigenvectors

for nonzero modes. Denote the left null space of a matrix M as N(M>).

From Lemma 3, we have that if [pÃ,pB̃] ∈ V c, thenN((Q(Ã, B̃))>) ⊆ span{e>1 , . . . , e>l }.

For the target set T , define the matrix CT according to (2.4). By the assumption

|N (S)| ≥ |S|, ∀S ⊆ XT , and Corollary 1, we have that g–rank(CT [Ā, B̄]) = |T |, which

implies that there exists a proper variety W ⊂ RnĀ+nB̄ , such that if [pÃ,pB̃] ∈ V c∩W c,
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then rank(CT [Ã, B̃]) = |T |, i.e., N((CT [Ã, B̃])>) = 0. Define Î ∈ Rn×n as

[Î]ij =


1, if j = i, i ∈ T ,

0, otherwise.

(A.16)

We claim that there does not exist a nontrivial vector e ∈ Cn such that Îe = e, e>Ã =

0e> and e>B̃ = 0. Otherwise, e>[Ã, B̃] = 0, which contradicts N((CT [Ã, B̃])>) = 0.

Hence, if [pÃ,pB̃] ∈ V c ∩W c, then there is no nontrivial vector v ∈ C|T |, such that

v>CT ∈ span{e>1 , . . . , e>l }. Thus, generically, N((CTQ(Ã, B̃))>) = 0. The (Ā, B̄) is

structurally target controllable with respect to T .

A.1.7 Proofs of Theorem 3 and Theorem 4

Proof of Theorem 3. (⇐=)Suppose there exists a target set T = {ti}ki=1 ⊆ [n] such that

there is no right-unmatched vertex in B(XT ,Y, EXT ,Y), and (Ā, B̄) is structurally target

controllable with respect to T . We construct C̃ ∈ {0, 1}k×n such that [C̃]iti = 1 and∑n
j=1[C̃]ij = 1,∀i ∈ [k]. Since (Ā, B̄) is structurally target controllable with respect to

T , there exist numerical realizations Ã, B̃ such that C̃ ·Q(Ã, B̃) is full row rank. Thus,

(Ā, B̄, C̄) is structurally output controllable.

(=⇒)We approach the proof by contraposition. Suppose for all target sets T ⊆ [n]

with respect to which (Ā, B̄) is structurally target controllable, there exists at least one

right-unmatched vertex in B(XT ,Y, EXT ,Y). Then, by taking a similar reasoning used

in the proof of Lemma 18, we can show that rank(C̃ ·Q(Ã, B̃)) ≤ k, ∀C̃ ∈ Rk×n, which

implies (Ā, B̄, C̄) is not structurally output controllable.

Sketch of Proof of Theorem 4. The NP-hardness can be proved by reducing a general

instance of 3-dimensional matching problem [212][p.46] to an instance of the structural

output controllability problem. More specifically, the elements in the three dimensions

S1×S2×S3 of the 3-dimensional matching problem are recast as vertices in U × X × Y,

where U ,X , and Y are input, state and output vertices, respectively. The links in S1×S2

and in S2 × S3 are recast as edges in EU ,X , and EX ,Y , respectively. We let [Ā]ij = 0,
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for ∀i, j ∈ [|X |]; [B̄]ij = ? if (uj , xi) ∈ EU ,X and [B̄]ij = 0 otherwise; [C̄]ij = ? if

(xj , yi) ∈ EX ,Y and [C̄]ij = 0 otherwise. By Theorem 3, the constructed structural sys-

tem (Ā, B̄, C̄) is structurally output controllable if there exists a 3-dimensional matching

in S1×S2×S3. Since such a reduction can be completed in polynomial time, the problem

of verifying both conditions in Theorem 3 is NP-hard.

A.2 Proof of the results in Chapter 3

A.2.1 Proof of Theorem 6

Proof of Theorem 6. First, we show that if the set of edges Ẽ contains SM and SB as

subsets, then it must be a feasible edge-addition configuration. We notice that, given

the system digraph G(Ā, B̄) = (X ∪ U , EX ,X ∪ EU ,X ), it suffices to show that SM ∪ SB

satisfies both conditions in Theorem 5 when the graph Gaug ≡ (X ∪ U , EX ,X ∪ EU ,X ∪

SM ∪ SB) is considered. Hereafter, we denote the bipartite representation of Gaug by

Baug ≡ B(X+ ∪U+,X−, EX+,X− ∪EU+,X− ∪S±M ∪S
±
B ), where S±M = {s(e) : e ∈ SM} and

S±B = {s(e) : e ∈ SB}.

To verify Condition (a) of Theorem 5, we decompose the set of state vertices X , into

R1 and N based on their reachability as in Definition 4. Specifically, R1 contains all

the reachable state vertices and N contains all the unreachable state vertices. Since

N =
⋃r
h=1 ∆(Nth), every state vertex v ∈ N must be contained in some ∆(Nth) for

some iteration step h. By the recursive construction of the bridging set SB as described

in Definition 4, Nth is reachable provided thatNth−1
is also reachable. Thus, we conclude

that all v ∈ N become reachable in Gaug.

To verify Condition (b) of Theorem 5, let M be a maximum matching associated with

the system bipartite graph. Next, we propose to consider a bipartite graph BM ≡

B(X ∪ U , EX ,X ∪ EU ,X ∪ S±M ), which is a sub-graph of the bipartite graph Baug. By

the construction of SM , M ∪ SM is a matching in BM . Furthermore, it is a maximum

matching since it has no right-unmatched vertices in BM . Since Baug has the same set
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of vertices as BM , it follows that M ∪ SM is also a maximum matching associated with

Baug. Subsequently, M∪SM satisfies Condition (b) in Theorem 5 for the system bipartite

graph Baug.

Therefore, if SM∪SB is added to the system digraph, the resulting system is structurally

controllable, which implies that SM ∪ SB is a feasible edge-addition configuration.

Next, we show that if Ẽ is a feasible edge-addition configuration, then it must contain

the union of the two sets as described in the theorem. Assume, by contradiction, that

there is no such SB in Ẽ , then there is a source SCC containing only state vertices that

is unreachable. This implies that none of its states are reachable, which precludes the

Condition (a) in Theorem 5 to hold; hence, a contradiction is attained. On the other

hand, assume that for any maximum matchings M associated with B(Ā, B̄), we have

SM \ Ẽ 6= ∅, then there exists at least one right-unmatched vertex corresponding to the

head of an edge in S±M \M , which precludes Condition (b) in Theorem 5 to hold; hence,

a contradiction is attained. Thus, a set Ẽ is a feasible edge-addition configuration if and

only if it contains SM and SB as subsets.

A.2.2 Proof of Corollary 2

Proof of Corollary 2. From Theorem 6, any feasible edge-addition configuration con-

tains SM , for some maximum matching M associated with the system bipartite graph,

and SB, the bridging edges as subsets, i.e., Ẽ ⊇ SM ∪ SB. Consequently, an optimal

edge-addition configuration should satisfy |Ẽ∗| ≥ |SM | = nr and |Ẽ∗| ≥ |SB| = r.

A.2.3 Proof of Theorem 7 and Theorem 8

Proof of Theorem 7. Briefly, the proof requires the following steps. First, we show that

an optimal edge-addition configuration Ẽ∗ must satisfy |Ẽ∗| ≥ nr + r − q. Then, we

construct a feasible edge-addition configuration such that its cardinality achieves nr +

r − q.
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From Theorem 6, a feasible edge-addition configuration must satisfy Ẽ ⊇ SM ∪SB. As a

result, the cardinality of a feasible edge-addition configuration should satisfy |Ẽ | ≥ |SM∪

SB|, which implies that |Ẽ | ≥ |SM |+|SB|−|SM∩SB|. Notice that, SM = nr and |SB| = r,

then |Ẽ | ≥ nr + r − |SM ∩ SB|. Thus, an optimal edge-addition configuration, which we

denote as Ẽ∗, must satisfy |Ẽ∗| ≥ nr + r −maxM,SB |SM ∩ SB|, where the maximum is

taken over all possible maximum matchings M of the system bipartite graph and possible

bridging sets SB for the system digraph. To obtain the value of maxM,SB |SM ∩ SB|,

we recall that maximizing the intersection between SM and SB gives the maximum

number of right-unmatched vertices across all possible maximum matchings associated

with B(Ā, B̄) in the unreachable source SCCs, i.e., the unreachable source assignability

number q, from Definition 6. Therefore, we have that maxM,SB |SM ∩ SB| = q, which

implies that |Ẽ∗| ≥ nr + r − q. Next, we show that there exists a feasible edge-addition

configuration that achieves p∗ = nr + r − q, which we approach by construction.

Given the system digraph G(Ā, B̄), we partition its state vertices based on reachability.

Specifically, we denote R1 as the set of all reachable state vertices and N as the set of

all unreachable state vertices. Moreover, we use N1, . . . ,Nr ⊆ N to denote the vertex

sets of r source SCCs that are unreachable, as in Definition 4. Furthermore, let Gr be

the R1-induced subgraph of G(Ā, B̄).

Next, we obtain a maximum matching M̄ that attains the USAN using Algorithm 2.

Without loss of generality, we assume there are q unreachable-assignable source SCCs

whose vertex sets are denoted as N1, . . . ,Nq with q ≤ r. Let UXL (M̄) and UR(M̄) be

the set of left-unmatched and right-unmatched state vertices associated with M̄ , respec-

tively. We can obtain a digraphG(V(s−1(M̄)), E(s−1(M̄))) from M̄ , where E(s−1(M̄))) =

{s−1(e) : e ∈ M̄} and V(s−1(M̄)), the vertices used by the edges belonging to E(s−1(M̄)).

In particular, the set of edges E(s−1(M̄)) is spanned by a disjoint union of paths {Pi}i∈I

and cycles {Cj}j∈J , where I and J denote their indices. Furthermore, to construct an

optimal edge-addition configuration, we define the following sets according to the cor-

respondence between the maximum matching attaining the USAN q and the path and

cycle decomposition captured by G(V(s−1(M̄)), E(s−1(M̄))). Let VL be the set of ending
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vertices of paths in {Pi}i∈I whose starting vertex is in U . Let S be the set containing

q starting vertices corresponding to disjoint paths in {Pi}i∈I and belonging to different

unreachable source SCCs. Lastly, let S± = {x+
i : xi ∈ VL}, which by construction is a

subset of left-unmatched vertices associated with M̄. Thus, either UXL (M̄) ∩ S± 6= ∅ or

UXL (M̄) ∩ S± = ∅ holds.

We now begin to construct a feasible edge-addition configuration that achieves p∗ under

the assumption that UXL (M̄) ∩ S± 6= ∅ holds. We first initialize Ẽ∗ to be an empty

set. Then, at the initialization (k = 1), we add an edge (v1, z1) into Ẽ∗, where v+
1 ∈

UXL (M̄)∩S± and z−1 is a right-unmatched vertex associated with M̄ in some unreachable

source SCCs, i.e., z1 ∈ Nl for some l ∈ {1, . . . , q}. Since v+
1 ∈ S±, it follows that

v1 ∈ R1. Consequently, if we add the edge (v1, z1) to the system digraph, then the

vertex z1 becomes reachable, which implies that all the state vertices in ∆(Nl) become

reachable as well. On the other hand, if z−1 ∈ UR(M̄), then there must exist a path

in G(V(s−1(M̄)), E(s−1(M̄))) departing from z1. In addition, the end of this path is a

left-unmatched state vertex v+
2 ∈ UXL (M̄) with v+

2 6= v+
1 . In particular, v2 ∈ ∆(Nl) since

it is reachable from z1. Then, we can add another edge departing from v+
2 to another

right-unmatched vertex z−2 in a different unreachable source SCC, i.e., to add the edge

(v2, z2) to Ẽ . We iterate this procedure for another q − 1 steps, i.e., k = 2, . . . , q, until

all q unreachable-assignable SCCs become reachable by adding edges into Ẽ∗.

Now, without loss of generality, let Ẽ∗ = {(vk, zk) : k = 1, . . . , q}, where v+
k ∈ U

X
L (M̄)

and z−k ∈ UR(M̄) for all k = 1, . . . , q, respectively. Nonetheless, there are r−q remaining

unreachable source SCCs, i.e., Nq+1, . . . ,Nr. To ensure reachability of all state vertices,

it suffices to add edges from the set of reachable state vertices to each one of the remain-

ing unreachable source SCCs. Consequently, the complementary set of edges to account

in Ẽ∗ is a set of bridging edges containing r edges by Definition 4. However, as implied

by Theorem 6, to construct a feasible edge-addition configuration, we still need to in-

clude SM as a subset. Towards this service, we notice that q right-unmatched vertices,

i.e., those in the unreachable-assignable SCCs, have been matched during the iterative

procedure. Consequently, it suffices to add nr− q edges to ensure that all the remaining
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right-unmatched state vertices are matched, i.e., those in UR(M̄) \ {z−1 , . . . , z−q }. As

such, we have constructed a set of edges considered to be added, i.e., Ẽ∗, that contains

a set of bridging edges and SM̄ for the maximum matching M̄. As a result, Ẽ∗ is a

feasible edge-addition configuration by Theorem 6. In addition, it contains nr + r − q

edges, which implies that it is an optimal edge-addition configuration – the construction

considered in this paragraph leads to Step 4 of Algorithm 3.

Next, we discuss the case when UXL (M̄)∩S± = ∅. First, we define G±r = {x−i : xi ∈ R1}

as the set of left-unmatched state vertices in Gr. As a consequence, two particular

cases may happen: either UXL (M̄) ∩ G±r = ∅ or UXL (M̄) ∩ G±r 6= ∅ holds. Consider

the first case, where UXL (M̄) ∩ G±r = ∅, since UXL (M̄) ∩ S± = ∅, then the subgraph

of G(V(s−1(M̄)), E(s−1(M̄))) constrained to the vertices in Gr consists only of cycles.

Therefore, and without loss of generality, we let cr be the number of those cycles, whose

set of vertices are denoted as Ci, i = 1, . . . , cr. According to the assumption ‖B̄‖0 6= 0,

there exists an edge (u, v) ∈ EU ,X , with u ∈ U and v ∈ V. Additionally, v belongs to

the vertex set of some cycle, i.e., v ∈ Cj for some j ≤ cr, which we represent by the

ordered sequence (v, v1, . . . , vk, v). If we replace the cycle (v, v1, . . . , vk, v) by the path

(u, v, v1, . . . , vk), then the new digraph will correspond to another maximum matching M̂

associated with B(Ā, B̄) with a reachable left-unmatched state vertex vk. Additionally,

UXL (M̂)∩S± 6= ∅, and, as a result, we may reduce the case with assumptions UXL (M̄)∩

S± = ∅ and UXL (M̄) ∩ G±r = ∅ to the case previously discussed by constructing a new

maximum matching M̂ – this procedure corresponds to steps 3 – 9 in Algorithm 3.

Now, we suppose that UXL (M̄) ∩ S± = ∅ and UXL (M̄) ∩ G±r 6= ∅ hold simultaneously.

Then, there exists v1 ∈ UXL (M̄) ∩ G±r and vr ∈ UR(M̄) such that (vr, . . . , v1) is a path

whose edges are associated with those in M̄ through a signal-notation mapping. In

particular, vr /∈ U . If vr is not a vertex in some unreachable source SCCs, then we

may apply the procedure introduced in the case when UXL (M̄) ∩ S± 6= ∅ to construct a

feasible edge-addition configuration containing p∗ edges. Nonetheless, if vr is a vertex in

some unreachable source SCCs, then a modification of the iterative construction must

be adopted. Specifically, recall that previously, at the basis step of iteration, we add
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(v1, z1) into Ẽ∗, in which z1 ∈ Nl is arbitrarily chosen. Now, if z1 is chosen to be equal

to vr, then (v1, vr) is added into Ẽ∗ and follow-up iteration steps cannot be performed

since the end of the path starting at z1 is v1. Consequently, we must adopt the following

modification: if q = 1, then we must add an edge (v1, vr) into Ẽ∗; otherwise, we add

an edge (v1, z1) into Ẽ∗ with z−1 ∈ UR(M̄) being a vertex in some unreachable source

SCCs and z1 6= vr at the basis step. In other words, when constructing the first q steps

of a feasible edge-addition configuration, we force z−i ∈ UR(M̄), zi ∈ Nl and zi 6= vr

for all i = 1, . . . , q − 1 and zq = vr, whereas the rest of the construction readily follows

as previously discussed. As such, we can obtain a feasible edge-addition configuration

achieving p∗ if UXL (M̄)∩S± = ∅ and UXL (M̄)∩G±r 6= ∅ simultaneously – this construction

procedure is summarized in steps 20 – 32 in Algorithm 3.

Therefore, we conclude that if ‖B̄‖0 > 0, we can construct a feasible edge-addition

configuration achieving p∗ = nr + r − q.

Proof of Theorem 8. The correctness of the algorithm follows from the proof of Theo-

rem 7. To determine the computational complexity of the algorithm, we consider the

computational complexity incurred by each one of the major steps in the algorithm.

Specifically, Step 1 requires the computation of strongly connected components, which

can be achieved by applying the depth-first search algorithm twice with complexity

O(|X ∪ U|+ |EX ,X ∪ EU ,X |) [154]. Finding a minimum-weighted maximum matching in

Step 2 incurs in O(|X ∪ U|3), and can be achieved as described in Algorithm 2, and

we can guarantee that exists at least one left-unmatched vertex of M̄ that is reachable

in O(|X |). In Step 3, we iteratively construct an optimal edge-addition configuration

as described in the proof of Theorem 7, which can be attained in O(|X | + |U|), since

it searches over the computed maximum matching and the source SCCs in the sys-

tem digraph. Finally, in Step 4, we add the remaining edges to ensure conditions in

Theorem 6, which incurs in O(|X |). In summary, the computational complexity of

Algorithm 8 is dominated by the second step, which implies an overall computational

complexity in O(|X ∪ U|3).
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Figure A-1: Example of the construction of G(X ∪ U , Eu, EU ,X ) from sets US = {S`}p`=1

in the proof of Theorem 9. Suppose we have US = {1, 2, 3, 4, 5}, S1 = {1, 2, 3},S2 =
{2, 4},S2 = {3, 5},S4 = {4, 5}. Then X = {xi}11

i=1 ∪ {si}4i=1, T = {1, 2, . . . , 10} and
U = {u1} are the set of state vertices, target set and the set of input vertex, respectively.

A.3 Proof of the results in Chapter 4

A.3.1 Proof of Theorem 9

Proof. Given a structural pair (Â, B̄) and target set T ⊆ [n], where Â is symmetrically

structured, we can verify in polynomial time whether the pair (Â, B̄) is structurally

target controllable with respect to T using Theorem 2. Thus, the Problem 4 is in

NP. To show the NP-hardness of Problem 4, we reduce a general min-set-cover prob-

lem instance to an instance of Problem 4. More specifically, a general min-set-cover

problem instance admits following elements, (i) a universe US = [n]; (ii) a collection

of sets {S`}p`=1, where US =
⋃p
`=1 S`. Based on (i) and (ii), we construct a mixed

graph G(X ∪ U , Eu, EU ,X ) as follows: we let X = {xi}2n+1
i=1 ∪ {s`}

p
`=1, U = {u1}, Eu =

{{xi, xi+n}}ni=1 ∪ {{xi, s`} : i ∈ S`, ` ∈ [p]} ∪ {{s`, x2n+1}}p`=1 and EU ,X = {(u1, x2n+1)},

and we let B̄ ∈ {0, ?}(2n+1+`)×1, B̄ = [0, . . . , 0, ?]>, be the structural pattern of input

matrix. We define a target set T = [2n] such that the target vertex set is XT = {xi}2ni=1.

See Figure A-1 for an illustration of such construction. We define a cost function

c(e),∀e ∈ X × X , as

c(e) =


1, if e ∈ Eu,

∞, otherwise.

(A.17)

From our construction of G(X ∪ U , Eu, EU ,X ), we have |N (S)| ≥ |S|,∀S ⊆ X , and ∀xi ∈

X are reachable. The structural pair, whose mixed graph representation is denoted by

G(X ∪ U , Eu, EU ,X ), is structurally controllable, i.e., the constructed instance of Prob-

lem 4 with c(e) ∈ {1,∞} is well-defined.

Next, we show a minimum solution of the constructed instance of Problem 4 yields
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a minimum solution of min-set-cover problem. Suppose we have a minimum solution

Eu(Ā?) of the constructed instance of Problem 4, then we claim that the minimum

cost is 2n + µ, for some µ ≥ 1, otherwise the two conditions in Theorem 2 cannot

be simultaneouly satisfied when considering the target vertex set XT = {xi}2ni=1. Let

{`i}µi=1 be the indexes of the vertices which are in {s`}p`=1 and are incident to edges

in Eu(Ā?). Since all the target vertices are reachable from input vertex, it implies

that in the min-set-cover problem the subsets {S`i}
µ
i=1 constitute a feasible solution

to the given instance of min-set-cover problem. Furthermore, suppose there exists a

union of subsets
⋃µ′

i′=1 S`i′ = US and µ′ < µ, then from {S`i′}
µ′

i′=1 we can construct a

set of sets {S ′`i′}
µ′

i′=1 such that (i) for ∀i′, j′ ∈ [µ′], S ′`i′ ∩ S
′
`j′

= ∅ and (ii) for ∀i′ ∈

[µ′], S ′`i′ ⊆ S`i′ . Based on the set {S ′`i′}
µ′

i′=1, we can construct a feasible solution to

Problem 4, Eu(Â) = {{xi, xi+n}}ni=1 ∪ {{s`j′ , x2n+1}}µ
′

j′=1 ∪ {{xi, s`j′} : i ∈ S`j′ , j
′ ∈ [µ′]}

with a total cost 2n + µ′ < 2n + µ. Then it contradicts that Eu(Ā?) is a minimum

solution to the constructed instance of Problem 4. Hence, a minimum solution of the

constructed instance of Problem 4 leads to a minimum solution of min-set-cover problem.

Consequently, we have shown that a general instance of min-set-cover problem can be

reduced to an instance of Problem 4 in polynomial time. Therefore, the Problem 4 is

thus NP-hard.

A.3.2 Proof of Theorem 10

Proof. See the Proof of Theorem 9.

A.3.3 Proof of Theorem 11 and related results

Proof of Lemma 4. (=⇒) Before we derive the two statements of Lemma 4, we first

prove that t–rank(Ā) ≥ n − 1, when (Ā, B̄) is structurally controllable under Assump-

tion 2. By Theorem 1 and Proposition 2, (Ā, B̄) is structurally controllable if and only

if ∀xi ∈ X is reachable and t–rank([Ā, B̄]) = n. Since B̄ ∈ {0, ?}n×1, ||B̄||0 = 1, we have
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t–rank(B̄) = 1. Suppose t–rank(Ā) < n− 1, then,

t–rank([Ā, B̄]) ≤ t–rank(Ā) + t–rank(B̄) = t–rank(Ā) + 1

< (n− 1) + 1 = n,

which contradicts to the fact that t–rank([Ā, B̄]) = n. Thus, t–rank(Ā) ≥ n− 1.

Since t–rank(Ā) ≥ n− 1, it follows that either GX\{x1} or GX , subgraphs of G(Ā), can

be covered by vertex-disjoint cycles. Furthermore, since [Ā]jj = 0, ∀j ∈ [n], there is no

cycle of length 1 in GX . Hence, the first statement is true. Since (Ā, B̄) is structurally

controllable and ||B̄||0 = 1, we have ∀xi ∈ X is reachable, i.e., GX is strongly connected.

(⇐=) Suppose either GX\{x1} or GX can be covered by vertex-disjoint cycles and GX

is strongly connected, then we have t–rank([Ā, B̄]) = n and ∀xi ∈ X is reachable. By

Theorem 1, (Ā, B̄) is structurally controllable.

Proof of Theorem 11. The general idea in this proof is to characterize the optimal solu-

tion in the two cases: |M1| = |M2| or |M1| 6= |M2|.

Case 1: Suppose |M1| = |M2|, then we approach the proof by first showing that

computing Eu1 and Eu2 is polynomially solvable and then we show |Eu1 | < |Eu2 | if Eu2

exists.

(i) Suppose Eu1 exists, then t–rank(Ā) = n and there exist vertex-disjoint directed

cycles {Ci}`i=1 covering X in G(Ā). We let Eodd = {e ∈ ECi : |VCi | = 2q + 1, q ∈ N}

and Eeven = {e ∈ ECi : |VCi | = 2q, q ∈ N} be the union set of directed edges in cycles of

odd-length and even-length in {Ci}`i=1, respectively. The minimum number of undirected

edges needed to cover an odd-length cycle Codd is |VCodd |, i.e., the total number of vertices

in this cycle Codd. Similarly, the minimum number of undirected edges needed to cover

an even-length cycle Ceven is |VCeven |. However, there exist |VCeven |/2 vertex-disjoint

length-2 cycles covering vertices in Ceven, as shown in the proof of Lemma 2. Thus, the

minimum number of undirected edges needed to make the vertices in Ceven be covered

by vertex-disjoint cycles is |VCeven |/2, i.e., for each length-2 cycle we need one undirected

edge. We denote by E ′u the minimum-cardinality set of undirected edges needed such that

the digraph G(X , {(xi, xj) : {xi, xj} ∈ E ′u})can be covered by vertex-disjoint cycles. Let
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E ′′u be a set of undirected edges such that each directed cycle in G(X , {(xi, xj) : {xi, xj} ∈

E ′u}) is connected with some other directed cycles. We condense each cycle as a vertex,

then finding undirected edges to make such vertices connected is equivalent to finding

a minimum undirected spanning tree. Let neven, nodd be the total number of vertex-

disjoint length-2 and odd-length cycles in G(X , {(xi, xj) : {xi, xj} ∈ E ′u}), respectively.

Since there are neven + nodd cycles, then we need neven + nodd − 1 undirected edges to

connect the neven + nodd cycles together, i.e., |E ′′u | = neven + nodd − 1. In total, we need

undirected edges |Eu1 | = |E ′u|+ |E ′′u |, i.e.,

|Eu1
| = |E ′u|+ |E ′′u |

= (|Eeven|/2 + |Eodd|) + (neven + nodd − 1),

(A.18)

Since the total number of length-2 cycles neven equals to |Eeven|/2, (A.18) yields

|Eu1 | = (|Eeven|+ |Eodd|) + (nodd − 1)

= |X |+ nodd − 1.

(A.19)

Therefore, minimizing |Eu1 | is equivalent to minimizing nodd, the total number of odd-

length disjoint cycles in G(Ā). As such, we have recast this problem equivalently to

maximizing the total number of length-2 disjoint cycles in G(Ā), which is equivalent to

finding a maximum undirected matching in G(Ā). The above approach to compute Eu1

can be used to find minimum undirected edges building vertex-disjoint directed cycles

covering X \ {x1} and make GX\{x1} strongly connected. The only difference is that we

should add an additional undirected edge connecting x1 and a vertex in X \{x1}, which

makes ∀xi ∈ X reachable.

(ii) We show Eu1 is an optimal solution by showing |Eu2 | > |Eu1 | when Eu2 exists. Since

M1 is a maximum undirected matching in G(Ā), there exists at most |M1| length-2

vertex disjoint cycles in G(Ā). Each state vertex ∀xi ∈ X is either covered by a length-

2 or odd-length vertex-disjoint cycle in G(Ā?). Through the derivation of (A.19), we

notice that there are |X | − 2|M1| odd-length vertex-disjoint cycles in G(Ā). Hence,

|Eu1 | = |X |+ (|X | − 2|M1|)− 1.

Subsequently, we compute Eu2 , the minimum number of undirected edges needed such

that X \ {x1} can be covered by vertex-disjoint cycles and G(X , Eu2) is strongly con-
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nected. There are at most (|M1| − 1) length-2 vertex-disjoint cycles in GX\{x1} (Other-

wise, |M2| = |M|1+1). Thus, we need at least (|X \{x1}|+(|X \{x1}|−2(|M1|−1))−1)

undirected edges such that X \ {x1} is covered by disjoint directed cycles and they are

strongly connected, and one edge connecting x1 with some vertex in X \ {x1} to ensure

the reachability of all the xi ∈ X . In total, we have

|Eu2
| ≥ (|X \ {x1}|+ (|X \ {x1}| − 2(|M1| − 1))− 1) + 1

= 2|X | − 2|M1| = |Eu1
|+ 1 > |Eu1

|.

Therefore, Eu1 is an optimal solution when |M1| = |M2|. Case 2: Suppose |M1| 6=

|M2|, we first prove |M2| = |M1| + 1, then we show {u1, x1} ∈ M2, and finally we

prove |Eu2 | < |Eu1 | if Eu1 exists.

(i) We first prove |M2| = |M1|+ 1. Suppose |M2| 6= |M1|, then it follows that |M2| ≥

|M1|+ 1 because G(Ā) is a subgraph of G(Ā)a. We want to show that |M2| ≤ |M1|+ 1.

We prove it by contradiction. Suppose there exists a maximum undirected matching

M2 in G(Āa) such that |M2| ≥ |M1|+ 2. There are only two cases,M2 includes either

{u1, x1}, or {x1, xj} for some xj ∈ X . In the first case, let M′ =M2 \ {{u1, x1}}. M′

is also a maximum undirected matching in G(Ā), and we have

|M′| = |M2| − 1 ≥ |M1|+ 1,

which contradicts thatM1 is a maximum undirected matching in G(Ā). Additionally, in

the second case, letM′ =M2 \{{u1, x1}}. M′ is also a maximum undirected matching

in G(Ā), and we have

|M′| = |M2| ≥ |M1|+ 2,

which also contradicts that M1 is a maximum undirected matching in G(Ā). Thus,

|M2| = |M1|+ 1 is true.

(ii) Next, we show {u1, x1} ∈ M2 if |M2| 6= |M1|. Suppose {u1, x1} /∈ M2, then let

M′ =M2 \ {{u1, x1}}. M′ is a maximum undirected matching in G(Ā). It yields

|M′| = |M2| = |M1|+ 1,

which contradicts thatM1 is a maximum undirected matching in G(Ā). Thus, we have

{u1, x1} ∈ M2.
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(iii) Finally, we show |Eu1 | > |Eu2 | when Eu1 exists. Suppose Eu1 exits, then there exist

(|X | − 2|M1|) odd length directed vertex-disjoint cycles in G(Ā). By equation (A.19),

|Eu1 | = |X | + (|X | − 2|M1|) − 1. From (i) and (ii), we conclude that M2 \ {{u1, x1}}

is a maximum undirected matching in G(X \ {x1}, {{xi, xj} ∈ Eu(Ā) : i, j 6= 1}). By a

similar reasoning of (A.19), we need |X \ {x1}| + (|X \ {x1}| − 2|M1|) − 1 undirected

edges such that X \{x1} can be covered by vertex-disjoint cycles and GX\{x1} is strongly

connected. Additionally, we need to add an edge connecting x1 and a vertex in X \{x1}

to let ∀xi ∈ X be reachable. In total, |Eu2 | = 1 + |X \ {x1}|+ (|X \ {x1}| − 2|M1|)− 1,

which implies |Eu2 | = |Eu1 |−1. Thus, Eu2 is an optimal solution when |M1| 6= |M2|.

A.3.4 Proof of Theorem 12

Proof. Suppose |M1| = |M2|, then the Step 2 returns a set E ′u of undirected edges such

that X can be covered by (|X | − 2|M1|) odd-length and |E ′u ∩ M1| length-2 vertex-

disjoint directed cycles. Let Ê ′u = E ′u ∩M1, and Ě ′u = E ′u \ Ê ′u. The Ê ′u includes all the

undirected edges constructing length-2 diected cycles and Ě ′u includes all the undirected

edges constructng odd-length directed cycles. Subsequently, Step 4 returns a set Mt of

undirected edges which connect |Ê ′u| length-2 cycles and (|X |−2|M1|) odd-length cycles

and we have |Mt| = |Ê ′u|+ (|X | − 2|M1|)− 1. In total,

|Eu| = |E ′u|+ |Mt| = |E ′u|+ (|Ê ′u|+ (|X | − 2|M1|)− 1)

= (|Ê ′u|+ |Ě ′u|) + (|Ê ′u|+ (|X | − 2|M1|)− 1)

= (2|Ê ′u|+ |Ě ′u|) + (|X | − 2|M1| − 1)

= |X |+ (|X | − 2|M1| − 1) = 2|X | − 2|M1| − 1,

(A.20)

where 2|Ê ′u|+|Ě ′u| = |X | because there are 2|Ê ′u| vertices covered by |Ê ′u| length-2 directed

cycles and |Ě ′u| vertices covered by odd-length directed cycles. The (A.20) shows that

Eu is an optimal solution to Problem 5. Similarly, we can prove Algorithm 2 returns an

optimal solution when |M2| 6= |M1|. Algorithm 2 involves computing a maximum undi-

rected matching, a minimum cost perfect bipartite matching, and a minimum undirected

spanning tree. The overall complexity is O(|X |3).
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A.3.5 Proof of Theorem 13 and related results

Proof of Lemma 5. We prove the first statement by contradiction. Suppose the total

number of right-unmatched vertices become r−q with respect a maximum matching M̃

in B2, where q ≥ 3, then we have |M̃| = n−(r−q). However, M̃′ = M̃\{(xi, xj), (xj , xi)}

is also a matching in B1 and |M̃′| = n−r+q−2, which contradicts thatM is a maximum

matching in B1.

We now prove the second statement. Let {xi`}k`=1 ⊆ X be the right-matched vertices

with respect to matching M in B1. We approach the proof by constructing a matching

M′ such that {xi`}k`=1∪{xi, xj} are right-matched. Suppose xi is right-unmatched, then

xi is either a starting vertex in a path P1 = (xi, xi1 · · · , xi(2p)), in which there are 2p+ 1

vertices for some p ∈ N, or an isolated vertex, which can be considered as a starting

vertex of a trivial path P1 which has only one vertex and no edge, in G(X ∪ U ,M),

otherwise it contradicts that xi is right-unmatched with respect to M. Similarly, we

have xj is either a starting vertex of a path P2 = (xj , xj1 · · · , xj(2q)) or an isolated vertex

in G(X ∪ U ,M). Thus, we construct

M′ =(M∪ {(xi, xj), (xj , xi)} ∪ {(xi2` , xi2`−1
)}p`=1

∪ {(xj2` , xj2`−1
)}q`=1) \ ({(xi2` , xi2`+1

)}p−1
`=1

∪ {(xj2` , xj2`+1
)}q−1
`=1 ∪ {(xi, xi1), (xj , xj1)}).

It is true that |M′| = |M| + 2, and xi, xj are right-matched with respect to M′ in

B2.

Proof of Theorem 13. We first prove that b = ceil(` + max( r−q1−2q2
2 , 0)) is a lower

bound for the optimal solution of Problem 6. Next, we show that the lower bound

can be improved to b′ = ceil(`+ max( r−q1−(2q2−1)
2 , 0)) when there is no reachable right-

unmatchable target vertex and r − q2 > 0.

Since there are ` unreachable T-SCCs, the set Eu of undirected edges to be added satisfies

|Eu| ≥ `. Moreover, we can reduce the total number of right-unmatched vertices to at

least max(r − 2q2 − q1, 0) after we make all the unreachable Class-2, 1 and 0 T-SCCs

reachable by adding q2+q1+q0 = ` edges connecting each unreachable T-SCC with some
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reachable vertices. In addition, we need to add at least ceil(max((r − 2q2 − q1)/2, 0))

undirected edges to make the remained right-unmatched vertices matched. Thus,

|Eu| ≥ q0 + q1 + q2 + ceil(max(
r − q1 − 2q2

2
, 0))

= ceil(l + max(
r − q1 − 2q2

2
, 0)) = b.

(A.21)

The b is a lower bound for an optimal solution to Problem 6.

Next, we consider the case when there is no reachable right-unmatched target vertex

and r − q2 > 0. In this case, there must exist at least one Class-2 T-SCC which has

more than one right-unmatched target vertex, otherwise it contradicts to r − q2 > 0.

We then show that the maximum number of right-unmatched target vertices can be

reduced is q1 +2q2−1. To fulfill the purpose of making q1 Class-1 T-SCC reachable and

minimizing right-unmatched vertices simultaneously, we should add q1 undirected edges

which connect each Class-1 T-SCC with a right-unmatched target vertex in Class-2 T-

SCCs. Besides, we need to add q2 undirected edges such that q2 Class-2 T-SCCs are

made reachable. Since there is no reachable right-unmatched target vertex, there must

exist an edge in those newly added edges which connects a right-unmatched target vertex

in a Class-2 unreachable T-SCC and a reachable right-matched vertex, which implies

that among the all q1 +q2 newly added edges, at least q1 +1 edge cannot reduce the total

number of right-unmatched target vertex by 2. Therefore, the maximum total number

of right-unmatched target vertices can be reduced is (q1 + 1) + 2(q2 − 1) = q1 + 2q2 − 1,

and b′ is the lower bound for the minimum cost of Problem 6.

A.3.6 Proof of Theorem 14

Proof. Let r, `, q1 and q2 be defined in the statement of Theorem 13. Suppose we have

q2 Class-2 T-SCCs. By running Algorithm 6, there are only two cases: either all class-2

T-SCCs go through Steps (5) to (7), or there exists a j0th, where j0 ≥ 1, Class-2 T-SCC

which does not. In the first case, we have r−2q2 ≥ 0 because when running Algorithm 6

each Class-2 T-SCC at its own iteration is made reachable by adding an edge which also

eliminates 2 right-unmatched target vertices in Step (5), a result from Lemma 5; In the

later case, we have two subcases: either the 1st Class-2 T-SCC goes through Steps (5)
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to (7), or it does not. In the first subcase, since we have sorted Class-2 T-SCCs in a

decreasing order of the total number of right-unmatched target vertices in each T-SCC,

we declaim that |X ′′i | ≤ |X ′′j0−1| = 1, ∀i ≥ j0, otherwise the (j0 − 1)th Class-2 T-SCC

has at least 2 right-unmatched target vertices, implying that the j0th Class-2 T-SCC

goes through Steps (5) to (7), which is a contradiction. After Algorithm 6 iterating

over all the Class-2 T-SCCs, all the Class-2 T-SCCs will be made reachable and all

right-unmatched target vertices will be matched because each i ≥ j0th Class-2 T-SCC

has |X ′′i | ≤ 1 right-unmatched target vertex and each newly added edges in the iteration

of i ≥ j0th Class-2 T-SCC can make the right-unmatched target vertex in the ith T-

SCC right-matched, as shown in the Step (10), Step (17) and Step (19). Hence, the

right-unmatched target vertices will be reduced to max(r − 2q2, 0) = 0. In the later

subcase, since the edge added at the 1st Class-2 T-SCC’s iteration only eliminates one

right-unmatched target vertex, after iterating over all the Class-2 T-SCCs, by a similar

reasoning taken in the above analysis, we conclude that the remainder number of right-

unmatched target vertices will be max(r − (1 + 2(q2 − 1)), 0) = max(r − (2q2 − 1), 0).

From Step (29) to (38), since each newly added edge connects a vertex in the feature

set of this Class-1 T-SCC with either a reachable right-unmatched vertex if exists, or a

reachable vertex otherwise, all the Class-1 T-SCCs will be made reachable, and the total

number of right-unmatched target vertices will be reduced to max(r− q1− (2q2− t), 0).

Then, from Step (39) to (42), all the Class-0 T-SCCs will be made reachable. So far, we

have made all the (q2 + q1 + q0) unreachable T-SCCs reachable by adding q2 + q1 + q0

undirected edges. From Step (43) to (50), we make all the max(r − q1 − (2q2 − t), 0)

remainder right-unmatched target vertices matched by adding ceil(max(r− q1 − (2q2 −

t), 0)/2) edges. We see that
∑

e∈Eu(Ā?) c(e) = ceil(`+ max(r − q1 − (2q2 − t), 0)/2), i.e.,

Algorithm 6 returns an optimal solution. Since in Algorithm 6 the Step (15) computes a

maximum matching and Algorithm 5 has complexity O(|X |3), we conclude Algorithm 6

has complexity O(|X |3).
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A.4 Proof of the results in Chapter 5

Proof of Lemma 6. First, we notice that sufficiency follows from the fact that structural

controllability ensures that almost surely there exists numerical realization ensuring con-

trollability, which implies that any desired state can be attained by a finite sequence of

inputs. Therefore, if there was not one such sequence, then the uncontrollable subspace

is nonempty, and the only way to ensure that we can take the state to the origin is when

the subspace is stable. a control input driving the states to the origin in finite time.

Necessity follows by contrapositive argument. Suppose that (Ā, B̄) is irreducible but

not structurally controllable, then by Theorem 1 in Chapter 2, there exists a set S ⊆ X

such that |N (S)| < |S|, which implies that g-rank([Ā, B̄]) < n. For ∀[pÃ,pB̃] ∈ RnĀ+nB̄ ,

∃v ∈ Cn, such that vT [Ã, B̃] = 0, i.e., vT Ã = vT 0. Consequently, there exists a zero

eigenvalue which is not controllable, hence not stabilizable.

Proof of Lemma 7. (If) Let us construct a numerical realization Ã22 by assigning zero

value to off-diagonal ?-entries of Ā22, and negative values to ?-entries on the diagonal.

In this case, matrix Ã22 is negative definite diagonal matrix.

(Only if) We approach the proof by contrapositive. Let m be the dimension of Ā22, and

{vi}mi=1 be the standard basis in Rm. Suppose there exists a fixed zero [Ā22]ii = 0, then

vTi Ã22vi = [Ã22]ii = [Ā22]ii = 0, for all numerical realizations of Ā22; hence, Ã22 is not

negative definite.

Proof of Theorem 15. (If) Without loss of generality, suppose (Ā, B̄) can be trans-

formed to the form of (2.3). Suppose for ∀S ⊆ Xr, |N (S)| ≥ |S|, then the input

reachable subsystem (Ā11, B̄1) is structurally controllable. If for ∀xi ∈ Xu, xi has self-

loop in G(Ā, B̄), then [Ā]ii is a ?-entry. Let us assign negative numerical weights to

all the ?-entries of Ā that correspond to the self-loop of all xi ∈ Xu. Then, the input-

unreachable part of the system, Ã22, is a negative definite diagonal matrix. Thus, we

have shown that there exists a numerical realization (Ã, B̃), such that the uncontrollable

part is asymptotically stable. Hence, the system is structurally stabilizable.
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(Only if) The necessity can be proved by contrapositive. Suppose there exists a state

vertex xi ∈ Xu that [Ā]ii = 0, then, by Lemma 7 any numerical realization (Ã, B̃) has an

uncontrollable non-negative eigenvalue. Furthermore, assume there exists S ⊆ X such

that |N (S)| < |S|, then by Lemma 6, (Ā, B̄) is not structurally stabilizable.

Proof of Lemma 8. Suppose t–rank([Ā, B̄]) = k, then there exists a set T ∈ [n], such

that for ∀S ⊆ XT = {xi ∈ X : i ∈ T }, |N (S)| ≥ |S|. By Theorem 2 in Chapter 2, (Ā, B̄)

is structurally target controllable with respect to T , which implies that there exists

a numerical realization (Ã, B̃) with [pÃ,pB̃] ∈ V c ∩W c, where V and W are proper

varieties in RnĀ+nB̄ , such that the dimension of the controllable subspace is k, i.e., almost

surely the dimension of controllable subspace of a numerical realization (Ã, B̃) is k. We

have the generic dimension of controllable subspace of (Ā, B̄), dc = t–rank([Ā, B̄]).

Proof of Theorem 16. Without loss of generality, there exists only two cases: either

(Ā, B̄) is irreducible or not. In the first case, by Lemma 3 in Chapter 2, Lemma 6 and

Lemma 8, the generic dimension of controllable subspace of (Ā, B̄) is t–rank([Ā, B̄]), and

if t–rank([Ā, B̄]) < n, then for any numerical realization (Ã, B̃), there are (n − k) zero

uncontrollable eigenvalues. Therefore, the maximum dimension of stabilizable subspace

of (Ā, B̄) is equal to t–rank([Ā, B̄]). In the other case, permute (Ā, B̄) to the form of

(2.3) and let k be the number of ?-entries in the diagonal of Ā22. We can construct a

numerical realization Ã22 with m-dim(Ā22, 0) = k by assigning negative values to the

nonzero diagonals of Ā22 and zeros to other free entries of Ā22. By Theorem 15, we have

that m-dim(Ā, B̄) ≥ t-rank([Ā11, B̄1]) + k.

Proof of Theorem 17. We prove the NP-hardness of Problem 9 by (polynomially) re-

ducing Min-k-Union problem to instances of Problem 9.

Suppose that we have a universe set US = {S`}p`=1, and an integer k ∈ Z+, for which

we need to select k subsets in {S`}p`=1 such that |
⋃k
i=1 S`i | is minimized. Let n =

|US | and define the state vertex set as X = {xi}2ni=1, and input vertex set as U =

{ui}pi=1. Next, we can construct a set of directed edges between state vertices, EX ,X =

{(xi, xi+n), (xi+n, xi)}ni=1, and a set of directed edges between input and state vertices,
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EU ,X = {(ui, xj) : i ∈ [p], j ∈ Si} – see Figure A-2 as an example for such a construction.

In the constructed graph G(X ∪ U , EX ,X ∪EU ,X ), we have |N (S)| ≥ |S|,∀S ⊆ X , and all

xi ∈ X are reachable.

From the graph G(X ∪ U , EX ,X ∪ EU ,X ), we construct the symmetrically structured ma-

trix Ā ∈ {0, ?}2n×2n such that [Ā]ij = ? if {xj , xi} ∈ EX ,X and [Ā]ij = 0 otherwise. We

also construct B̄ ∈ {0, ?}2n×p such that [B̄]ij = ? if {uj , xi} ∈ EU ,X and [B̄]ij = 0 other-

wise. We can verify that the maximum stabilizable subspace for the constructed sym-

metrically structured matrix Ā ∈ {0, ?}2n×2n is n and m-dim(Ā, B̄(J )) = n+
1

2
|∪j∈J Sj |.

Let the attack budget be c = p− k. In our constructed instance of Problem 9, we aim

to remove c actuators from {ui}pi=1 such that the maximum dimension of the stabiliz-

able subspace is minimized. Subsequently, we claim that an optimal solution of the

constructed instance of Problem 9 enables us to retrieve an optimal solution to the

Min-k-Union problem.

Suppose we have a feasible solution Ur = {u`i}
p−k
i=1 . Then if we consider L = [p]\{`i}p−ki=1 ,

we have that L is a feasible solution of Min-k-Union problem. Moreover, suppose U∗r =

{u`i}
p−k
i=1 is a minimum solution to Problem 9, but L = [p] \ {`i}p−ki=1 is not an optimal

solution of Min-k-Union problem, then L′ = {ηi}ki=1 would be a solution to Min-k-

Union problem such that |
⋃k
i=1 Sηi | < |

⋃
i∈L Si|. Next, let U ′r = {ui ∈ U : i ∈ [p] \ L′}

and notice that the maximum stabilizable subspace by removing U ′r is smaller than the

maximum stabilizable subspace when removing U∗r , which contradicts U∗r is an optimal

solution.

Proof of Theorem 18. Consider an instance of Problem 9 under Assumption 3. We

associate the structural pair (Ā, B̄), where Ā ∈ {0, ?}n×n and B̄ ∈ {0, ?}n×m, with a

digraph G(Ā, B̄). Denote by {Di}pi=1 the set of vertices in the ith SCC in D(Ā, 0).

Firstly, without loss of generality, we could assume that

Di = {xdi−1+1, xdi−1+2, · · · , xdi−1+|Di|},
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Figure A-2: Example of the construction of G(X ∪ U , EX ,X ∪ EU ,X ) in the proof of
Theorem 17. Suppose we have a finite universe set US =

⋃4
`=1 S`, where US =

{1, 2, 3, 4, 5},S1 = {1, 2, 3},S2 = {2, 4},S3 = {3, 5},S4 = {4, 5}. From the given set
US =

⋃4
`=1 S`. We construct the state vertex set X = {xi}10

i=1, and the input vertex set
U = {ui}4i=1. The black and red vertices in Figure A-2 are the state and input vertices
in G(X ∪ U , EX ,X ∪ EU ,X ), respectively.

with d0 = 0 and di = di−1 + |Di|. Secondly, for the ith SCC, we define the set Ri =

{ri−1 + 1, ri−1 + 2, . . . , ri−1 + (|Di| − m-dim(ĀDi , 0))}, with r0 = 0 and ri = ri−1 +

|Di|−m-dim(ĀDi , 0), where ĀDi ∈ {0, ?}|Di|×|Di| is the symmetrically structured matrix

corresponding to the ith SCC. Finally, for the jth control input, we construct the set

Sj = {
⋃
i∈I Ri | I is the set of SCCs reachable from uj}. By the above construction

and Assumption 3, we have that

m-dim(Ā, B̄(J )) = m-dim(Ā, 0) + |
⋃
j∈J
Sj |. (A.22)

We let US =
⋃m
i=1 Si. Suppose the budget in Problem 9 is k, then Problem 9 is to

find (m − k) sets S`1 , · · · ,S`m−k among {Si}mi=1 such that |
⋃m−k
i=1 S`i |, i.e., the number

of reachable state vertices, is minimized. By Definition 13, we see that in this case

Problem 9 is equivalent to the Min-k-Union problem, in which we are given sets {Si}mi=1

and we aim to find (m − k) sets {S`i}
m−k
i=1 , {`i}m−ki=1 ⊆ {1, 2, · · · , (m − k)}, such that

|
⋃m−k
i=1 S`i | is minimized. If there exists a ρ(m)-approximation algorithm for the Min-

k-Union problem, i.e., |
⋃
j∈J Sj | ≤ ρ(m)|

⋃
j∈J ∗ Sj |, then,

m-dim(Ā, B̄(J )) = m-dim(Ā, 0) + |
⋃
j∈J
Sj |

≤ m-dim(Ā, 0) + ρ(m) · (|
⋃
j∈J ∗

Sj |)

≤ ρ(m) ·m-dim(Ā, B̄(J ∗)),

(A.23)
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where J ∗ is an optimal solution to the Min-k-Union problem. From the above reasoning,

we have that B̄(J ∗) is also an optimal solution to Problem 10 and m-dim(Ā, B̄(J )) ≤

ρ(m) ·m-dim(Ā, B̄(J ∗)).

Sketch of Proof of Theorem 19. We can prove the NP-hardness by reducing a general

instance of the Max-k-Union problem to an instance of Problem 10. Suppose we have a

ground set US = {S`}p`=1, and an integer k ∈ N. The constrained maximum set coverage

problem is to select k subsets in US such that |
⋃k
i=1 S`i | is maximized. Following a

similar construction and reasoning taken in the proof of Theorem 17, we can prove that

the Max-k-Union problem can be reduced to Problem 10 in polynomial time.

Proof of Theorem 20. Consider a structural pair (Ā, B̄), where Ā ∈ {0, ?}n×n is sym-

metrically structured and B̄ ∈ {0, ?}n×m is structured. We let U denote the input

vertices corresponding columns of B̄, and let Ucan, where |Ucan| = m′, be the set of new

actuators that can be added to the system. We associate with the set Ucan the structured

matrix B̄Ucan ∈ {0, ?}n×m
′
. Define a function f : J ⊆ [m′]→ m–dim(Ā, [B̄, B̄Ucan(J )]).

We first prove that f(J ) is a submodular function, and then we show that Algorithm 7

returns a (1− 1/e) approximation solution.

Before we proceed, we construct a few sets. We denote by {Di}pi=1 the set of vertices in

the ith input-unreachable SCC in G(Ā, B̄). Without loss of generality, we assume that

Di = {xdi−1+1, xdi−1+2, · · · , xdi−1+|Di|}, with d0 = 0 and di = di−1+|Di|. Then, for the i-

th unreachable SCC, we define the set Ri = {ri−1 +1, ri−1 +2, . . . , ri−1 +(t-rank(ĀDi)−

m-dim(ĀDi , 0))}, with r0 = 0 and ri = ri−1 + t-rank(ĀDi) − m-dim(ĀDi , 0), where

ĀDi ∈ {0, ?}|Di|×| Di| is the symmetrically structured matrix corresponding to the i-th

unreachable SCC. Finally, for the j-th control input uj in Ucan, we construct the set

Sj = {
⋃
i∈I Ri | I is the set of unreachable SCCs in D(Ā, B̄) but reachable from uj}.

Let q(J ) be the total number of state vertices which are right-unmatched in B(Ā, B̄)
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but right-matched in B(Ā, [B̄, B̄Ucan(J )]). By definition, we have

f(J ) = m-dim(Ā, B̄) + |
⋃
j∈J
Sj |+ q(J ). (A.24)

which implies f(J ) is a monotonically increasing function of J ⊆ [m′].

Furthermore, consider two sets J1, J2, where J1 ⊆ J2 ⊆ [m′]. Suppose j ∈ [m′] \ J2

and denote by J ′1 = J1 ∪ {j} and J ′2 = J2 ∪ {j}, then

f(J ′1)− f(J1) = |
⋃
j∈J ′1

Sj | − |
⋃
j∈J1

Sj |+ q(J ′1)− q(J1), (A.25)

and

f(J ′2)− f(J2) = |
⋃
j∈J ′2

Sj | − |
⋃
j∈J2

Sj |+ q(J ′2)− q(J2). (A.26)

On one hand, suppose q(J ′1)−q(J1) = 1, then q(J ′2)−q(J2) = 1 or 0; On the other hand,

suppose q(J ′1) − q(J1) = 0, then q(J ′2) − q(J2) = 0. Recall that the set coverage func-

tion is a submodular function, i.e., |
⋃
j∈J ′1
Sj | − |

⋃
j∈J1
Sj | ≥ |

⋃
j∈J ′2
Sj | − |

⋃
j∈J2
Sj |.

Therefore, we have that

f(J ′1)− f(J1) ≥ f(J ′2)− f(J2), (A.27)

which implies that f(J ) is a monotonically increasing submodular function.

Because f(J ) is a monotonically increasing submodular function, by a similar technique

taken in the proof of [213, Proposition 5.1], we can show that Algorithm 7 returns a

(1− 1/e)-approximation solution to Problem 10.

228



A.5 Proof of the results in Chapter 6

Proof of Theorem 21. Given k ∈ N, we have

Tr(Ak) =
n∑
i=1

[Ak]ii,

=
n∑
i=1

∑
j1,...,jk−1

[A]ij1 · · · [A]jk−1i.

(A.28)

In particular, since [A]ii = 0 for all i ∈ [n], we must have i 6= j1, jk−1 6= i and j` 6= j`+1

for all ` < k − 1 in the above summation, since the term [A]ij1 · · · [A]jk−1i vanished

otherwise. We use i → j1 · · · jk−1 → i to represent a closed walk of length k satisfying

[A]ij1 · · · [A]jk−1i 6= 0. Notice that there may exist repetitive indices in i→ j1 · · · jk−1 →

i; hence, we may have that |{i, j1, . . . , jk−1, i}| ≤ k. Subsequently, we have:

∑
j1,...,jk−1

[A]ij1 · · · [A]jk−1i =
k∑
s=2

∑
|{i,j1,...,jk−1,i}|=s

[A]ij1 · · · [A]jk−1i. (A.29)

In other words, we can classify closed walks into subgraphs with orders less or equal to

k. In particular, these subgraphs are weakly-connected. Combining (A.29) and (A.28),

we have

Tr(Ak) =
n∑
i=1

k∑
s=2

∑
|{i,j1,...,jk−1,i}|=s

[A]ij1 · · · [A]jk−1i. (A.30)

Below, we analyze how the counts of order-k, weakly-connected subgraphs contribute

to (A.29).

Let us consider a subgraph Gsub ⊆ G with order s ≤ k. Without loss of generality, we

may relabel the vertices of Gsub by [s]. Consider a closed walk of length k in Gsub such

that the closed walk traverses each edge of Gsub at least once. Let ηi,k(Gsub) be the

number of these closed walks starting at i ∈ [n]. Then, each subgraph Gsub contributes∑s
i=1 ηi,k(Gsub) number of walks in the summation in (A.30). Moreover, the number

ηi,k(Gsub) is the same for all Gh ∈ Iso(Gsub). Let ηk(Gsub) =
∑s

i=1 ηi,k(Gsub). Then,
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each class of subgraph contributes Count(Gsub, G)ηk(Gsub) to Tr(Ak). As a result,

Tr(Ak) =

k∑
s=2

∑
Gsub∈Ωs

Count(Gsub, G)ηk(Gsub).

In particular, let As be the adjacency matrix of Gsub, if Tr[Aks ] = 0, then

ηi,k(Gsub) = 0,

for all i ∈ [s].

Proof of Theorem 23. First, consider the spectral distribution µA and generate from µA

an infinite multi-sequence y2,∞ whose elements are given by yα = EµA [xα] for allα ∈ N2.

The discussions before Theorem 23 show that, given a fixed r ∈ N, there exits a finite

subsequence in y2,∞ satisfying (6.15)–(6.17). Furthermore, according to Corollary 3,

this subsequence satisfies M̃r � 0, L̃r(g1) � 0, L̃r(g2) � 0, L̃r(g3) � 0, L̃r(g4) � 0. In

other words, all the constraints in (6.24) are satisfied. Thus, we can induce from y2,∞

a finite subsequence of moments that is feasible with respect to (6.24). Consequently,

the minimization in Theorem 23 leads to a lower bound on λn.

Similarly, for r > 1, we let Fr be the set of feasible solutions to (6.24). Since M̃r � 0,

it follows that all its principal submatrices are positive semidefinite. Thus, M̃r−1 � 0.

Similar statements hold for L̃r(g1), L̃r(g2), L̃r(g3), and L̃r(g4). Thus, we have that Fr ⊆

Fr−1 and, consequently, ρ?l,2r+1 ≥ ρ?l,2r−1.

Proof of Theorem 24. It suffices to replace µA in the proof of Theorem 23 by µ̃A. The

rest of the proof of this theorem follows exactly the same logic as the proof of Theorem 23.

Proof of Theorem 25 and Theorem 26. By replacing µA in the proof of Theorem 23 by

ν̃AI , and ν̃AR , respectively, we can obtain that p?r ≥ λn(AR) and ω?r ≥ λn(AI) for every
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r ∈ N. Combining these bounds with

ωmax(A) ≤ λn
(
j(A−A>)

2

)
,

and

λn(A) ≤ λn
(
A+A>

2

)
,

the result follows.

A.6 Proof of the results in Chapter 7

In this appendix, we provide proofs for the lemmas and theorems in this paper. Through-

out this section, denote the m-by-n matrix of all ones by Jm,n ∈ Rm×n.

Lemma 19. Given a directed graph G = (V, E), i1, . . . , ik ∈ [n], and α ∈ Nk. If

dxi = −xidPδi + (1− xi)
∑
j∈N−i

xjdPβij , (A.31)

for all i ∈ V, then

dE[φα(x)]

dt
=
dE[φ1(x)]

dt
. (A.32)

Proof of Lemma 19. To show (A.32), we first write (A.31) in the form of (7.8). No-

tice that there are |V| + |E| Poisson counters in total, thus we define h` : Rn → Rn,

for ` ∈ [|V| + |E|]. Each h` is defined as follows: (i) when ` ∈ [n], we let h`(x) =

[0, . . . ,−x`, . . . , 0]>, and (ii) when ` > n, we order the edges (j, i) ∈ E and assign then

with a label `; hence, h`(x) = [0, . . . , (1−xi)xj , . . . , 0]>, i.e., each (j, i) ∈ E is associated

with a function h`.
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With these definitions, it follows from (7.9) that

dφ1(x) =−Πk
s=1xis

(
k∑
s=1

dPδis

)

+
k∑
s=1

∑
`∈N−s

xi1 · · · (1− xis)x` · · ·xikdPβs` .
(A.33)

Notice that the random variables xi’s are supported on [0, 1], for all i ∈ [n], therefore

E[φα(x)] exists and is finite for every α ∈ Nn. Subsequently, from (A.33), we have that:

dE[φ1(x)]

dt
= −

k∑
s=1

δi`E [φ1(x)]

+

k∑
s=1

∑
`∈N−is

βis`E[xi1 · · · (1− xis)x` · · ·xik ].

(A.34)

On the other hand,

dφα(x) = −φα(x)

(
k∑
s=1

dPδis

)

+
k∑
s=1

∑
`∈N−s

xα1
i1
· · ·
(
(xis + (1− xis)x`)αs − xαsis

)
· · ·xαkik dPβs` .

(A.35)

Since xi ∈ {0, 1} for all i ∈ [n], the term (xis + (1− xis)x`)αs − xαsis equals to

αs−1∑
κ=0

(
αs
κ

)
xκis ((1− xis)x`)

αs−κ .

However, since xis ∈ {0, 1}, the above term can be further simplified to ((1− xis)x`)
αs .

Therefore, taking expectation of (A.35) leads to:

dE[φα(x)]

dt
= −

k∑
`=1

δi`E [φα(x)]

+
k∑
s=1

∑
`∈N−is

βis`E[xα1
i1
· · · (1− xis)αsxαs` · · ·x

αk
ik

]

=
dE[φ1(x)]

dt
,

(A.36)
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where the second equality is due to xi are binary random variables.

With the above lemma, we proceed to prove Theorem 29.

Proof of Theorem 29. From Lemma 19, we have that

dE[φα(x)]

dt
= −

k∑
`=1

δi`E [φα(x)]

+
k∑
s=1

∑
`∈N−is

βis`E[xα1
i1
· · · (1− xis)αsxαs` · · ·x

αk
ik

].

(A.37)

Meanwhile, dE[φα(x)]
dt = dE[φ1(x)]

dt holds for all α, thus rearranging the term E[xi1 · · · (1−

xis)x` · · ·xik ] leads us to (7.11).

In order to show Lemma 15, we introduce the following lemma.

Lemma 20. Consider a matrix A = [aij ] ∈ Rn×n, a sequence of integers d1, . . . , dn ∈ N,

and a mapping f : Rn×n → R
∑n
i=1 di×

∑n
i=1 di defined as

f(A) =



a11Jd1,d1 a11Jd1,d2 · · · a1nJd1,dn

∗ a22Jd2,d2 · · · a2nJd2,dn

...
...

. . .
...

∗ ∗ ∗ annJdn,dn


,

where Jpq is the p× q matrix of all ones. Then, if A � 0, we have that f(A) � 0. �

Proof of Lemma 20. To proof the Lemma, let us define Td1,...,dn ∈ R
∑n
i=1 di×n as

Td1,...,dn =


1d1 · · · 0

...
. . .

...

∗ · · · 1dn

 ,

i.e., a block-diagonal matrix with its diagonal blocks specified by 1d1 , · · · ,1dn .
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Next, we notices that given a matrix A = [aij ] ∈ Rn×n,

f(A) =



a11Jd1,d1 a11Jd1,d2 · · · a1nJd1,dn

∗ a22Jd2,d2 · · · a2nJd2,dn

...
...

. . .
...

∗ ∗ ∗ annJdn,dn


= Td1,...,dnAT

>
d1,...,dn .

Consequently, A � 0 implies that f(A) = Td1,...,dnAT
>
d1,...,dn

� 0.

Suppose that there exists v such that v>Av < 0, then we construct w ∈ R
∑n
i=1 di as

follows iteratively. The first d1 entries of w are all equals to v1/d1, the i-th di entries

of w are all equals to vi/di. Thus, T>d1,...,dn
w = v. Thus, f(A) is negative definite.

Consequently, we have shown that A � 0 if and only if f(A) � 0.

With the help of Lemma 20, we are able to prove Lemma 15.

Proof of Lemma 15. Notice that S̃k = [0, 1]k is a compact, semi-algebraic set, and it

satisfies the Putinar’s condition, it follows that y∞(Ik) is S̃k-feasible if and only if the

conditions in (7.6) are satisfied. Subsequently, it suffices to show that the matrices

in (7.18) implies the positive semi-definiteness of the moment and localizing matrices

specified according to Theorem 1 and vice versa.

Consider r ∈ N and r ≥ k̄, the construction of (7.13) together with the definition of

y∞(Ik) implies that Mk̄(y(Ik)) is the k̄-th order principal submatrix of Mr(y∞(Ik)).

Since Mr(y∞(Ik)) � 0, we have that Mk̄(y(Ik)) � 0 as well. Similarly, the positive

semi-definiteness of localizing matrices of y∞(Ik) implies that both L1
k̄
(y(Ik), s) and

L0
k̄
(y(Ik), s) are positive semi-definite for all s ∈ [k].

Conversely, if Mk̄(y(Ik)) is positive semi-definite, we aim to show that Mr(y∞(Ik))

is also positive semi-definite for all r ∈ N. Notice that it suffices to show the above

relationship holds for r > k. To achieve this goal, we proceed by permuting the entries

in Mr(y∞(Ik)). Without loss of generality, we assume that Ik = {1, . . . , k}. Given a a
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set W ⊆ Ik, we use xW = Πi∈Wxi. Next, we consider

vr(xIk) =
[
1, x1, . . . , xk, x

2
1, . . . x

2
k, . . . , x

r
1, . . . , x

r
k

]
,

and

v′r(xIk) =

[
1,

monomials involving only x1︷ ︸︸ ︷
x1, . . . , x

r
1, . . . ,

xW , . . .︸ ︷︷ ︸
monomials involving only xw for w ∈ W

, . . . , xIk

]
.

Thus, v′r(xIk) is a permutation on the entries in vr(xIk). Let Nr =
(
k+r
r

)
, and Sr be the

permutation group on the set [Nr], there exists π : Sr → Sr such that for all i ∈ [Nr] we

have v′r(xIk)i = π(vr(xIk)j for some j ∈ [Nr].

Consider the following Nr-dimensional matrix M̂r whose entries are defined by:

[M̂r]α,β = y∞(Ik)π−1(α+β) (A.38)

for all α,β ∈ Nkr/2. Thus, there exists a permutation matrix P ∈ {0, 1}Nr×Nr such that

M̂r = PMr(y∞(Ik))P−1. Moreover, M̂r is in the following form:



1 µ11
>
r/2 · · · ∗

∗ µ1Jr/2,r/2 · · ·
...

∗ ∗ . . .
...

∗ ∗ ∗ µIkJq,q


, (A.39)

for some q ∈ N. Similarly, we can permute the matrix Mk̄(y(Ik)) into the above form.

Thus, there exists M such that Td1,...,dk̄
MT>d1,...,dk̄

= P̂Mk̄(y(Ik))P̂−1 for some se-

quence of d1, . . . , dk̄. Furthermore, there exists another sequence {d1, . . . , dr/2} such

that Td1,...,dr/2MT>d1,...,d ¯r/2
= M̂r. Consequently, applying Lemma 20 twice, we have that

if Mk̄(y(Ik)) � 0 then Mr(y∞(Ik)) � 0. The above claim holds for arbitrary r, thus

the result follows. The relationship between finite and infinite dimensional localizing

matrices can be shown using the above procedure.
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Proof of Theorem 30. To show the monotone relationship µ̂I(t) ≥ µI(t) ≥ µ̌I(t) holds

for all I and t ≥ 0, we apply the multi-variate comparison lemma, i.e., Theorem 1.2

from [214]. More specifically, we aim to show that when µ̂I = µI , ˙̂µI ≥ µ̇I for all

µ̂J ≥ µJ ,J 6= I and µ̌J ≤ µJ ,∀|J | ≤ k.

On one hand, when |I∪{`}}| ≤ k, we have that all the terms with positive coefficients are

bounded above by upper estimates µ̂I∪`\{is}, whereas the terms with negative coefficients

are bounded below by µ̌I∪{`}; thence ˙̂µI ≥ µ̇I holds.

On the other hand, when |I ∪ {`}}| = k+ 1, it suffices to show that µI∪{`} is feasible in

the SDPs (7.25). Consider the random variable xI∪{`} = [xi1 , . . . , x`]
>, its underlying

measure at time t is supported on S̃|I|+1, which is a compact and semi-algebraic set.

Let y be the infinite multi-sequence consisting of all the moments of xI∪{`}. From y,

we can readily construct moment matrix Mr(y), and localizing matrices Lr(gjy), for

any given r ∈ N. Consequently, according to Theorem 1, these matrices are positive

semi-definite. Moreover, according to Lemma 15, the positive semi-definiteness of these

matrices are equivalent to positive semi-definiteness of Mk̄(y(I∪{`})), L1
k̄
(y(I∪{`}), s),

and L0
k̄
(y(I ∪{`}), s) for all s ∈ [k]. Consequently, {µJ }J⊆I∪{`} is a feasible solution to

both 7.23 and (7.24). Meanwhile, the eigenvalues of (7.21) and (7.22) are monotonic in

terms of their entries, which implies that {µJ }J⊆I∪{`} is also feasible with respect to

both the minimization and maximization problems (7.25). Furthermore, this holds for

all µ̂J ≥ µJ ,J 6= I and µ̌J ≤ µJ ,∀|J | ≤ k. Summarizing the above claims, we have

that if µ̂I(0) ≥ µI(0), then µ̂I(t) ≥ µI(t) holds for all I and t ≥ 0. The above argument

readily applies to the comparison between µI(t) and µ̌I(t).

Proof of Theorem 31. To show the results, we use the fact that a matrix is positive

semi-definite, if and only if, all its principal minors are non-negative [215] and ap-

ply it to (7.26)– (7.29), respectively. Consider constraint (7.26), we must require

the determinant of M1(y(I2)) to be non-negative. Notice that, det(M1(y(I2))) =

−µ2
ij + 2µiµjµij − µiµj(µi + µj − 1), which is quadratic in terms of µij . As a result,
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det(M1(y(I2))) ≥ 0 is equivalent to:

µij ∈ [µiµj − h(µi, µj), µiµj + h(µi, µj)] ,

where h(x, y) =
√
x(1− x)y(1− y) for all x, y ∈ [0, 1]. Moreover, we require all principal

minors of M1(y(I2)) to be non-negative. In particular,

det


µi µij

µij µj


 ≥ 0

indicates that µij ≤
√
µiµj .

Similarly, we compute all principal minors of localizing matrices and require them

to be non-negative. Therefore, from L0
1(y(I2), i), L0

1(y(I2), j) � 0, we obtain µij ≤

min{µi, µj}. From L1
1(y(I2), i), L1

1(y(I2), j) � 0, we have µij ≥ µi + µj − 1.

Therefore, {µi, µj , µij} is a feasible moment sequence provided that all the above con-

straints on µij are satisfied simultaneously. This is equivalent to µij ∈ [lij , uij ] , where

uij = min{µi, µj ,
√
µiµj , µiµj + h(µi, µj)}, (A.40)

and

lij = max{µiµj − h(µi, µj), µi + µj − 1, 0}. (A.41)

Notice that uij can be further simplified as follows. When µi ≤ µj , then (A.40) is

equivalent to min{µi,
√
µiµj , µiµj+h(µi, µj)}. Under this circumstance, µi =

√
µi
√
µi ≤

√
µiµj . Moreover,

µi ≤ µj ⇒ (1− µj)µi ≤ (1− µi)µj ,

⇒ (1− µj)2µ2
i ≤ µiµj(1− µi)(1− µj),

⇒ µi ≤ µiµj + h(µi, µj).

As a result, when µi ≤ µj , uij = µi. Similarly, when µj ≤ µi, uij = µj . Subse-
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quently, (A.40) can be simplified into:

uij = min{µi, µj}.

We adopt an analogous procedure for simplifying (A.41). When µi + µj ≥ 1, then

lij = max{µiµj − h(µi, µj), µi + µj − 1}. In this case, we have:

µi + µj − 1 ≥ 0⇒ (1− µi)(1− µj) ≤ µiµj ,

⇒ (1− µi)(1− µj) ≤ h(µi, µj),

⇒ µi + µj − 1 ≥ µiµj − h(µi, µj).

Consequently, we obtain that:

lij = max{0, µi + µj − 1}.

Since βij > 0, maximizing over −
∑n

j=1 βijµij is equivalent to minimize µij . In particular,

the minimum of µij is attained at lij . Thus, the upper bound is obtained. Similarly, to

obtain the lower bound, we maximize µij for all i, j ∈ [n]. The optimal solution of these

two problems are µ?ij and µ?
ij
, respectively.

Next, we aim to show that µ̂i(t) ≥ µi(t) ≥ µ̌i(t). To achieve this goal, we utilize

Proposition 1.4 from [214]. It suffice to show that when µi(t) = µ̂i(t), ˙̂µi ≥ µ̇i for all

µ̂j ≥ µj . Consider the difference between ˙̂µi and µ̇i

dµ̂i
dt
− dµi

dt
=
∑
j

βij
[
µ̂j − µj + µij − µij

]
=
∑
j

[µ̂j − µj + µij −max{0, µ̂j + µi − 1}]

The above equality is due to the assumption that µ̂i = µi. Consider the following cases:

(i) µ̂j = µj , then the right-hand-side is larger than zero according to (7.24); (ii) µ̂j > µj

and µ̂j+µi−1 ≤ 0, the RHS is non-negative trivially; and (iii) µ̂j > µj and µ̂j+µi−1 > 0,
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it follows that:

dµ̂i
dt
− dµi

dt
=
∑
j

[µ̂j − µj + µij − µ̂j − µi + 1]

≥
∑
j

[µij −max{0, µi + µj − 1}] ≥ 0.

As a consequence, µ̂i(t) ≥ µi(t) according to [214]. Similar analysis holds for comparing

˙̌µi and µ̇i.

Proof of Theorem 32. Similar to the treatment in Lemma 19, we define h` : R3n → R3n,

for ` ∈ [|V|+ |E|]. Each h` is defined as follows: (i) when ` ∈ [n], we let

h`(x) = [0, 0, 0, . . . , 0,−x`,I , x`,I , . . . , 0, 0, 0]>,

and (ii) for every (i, j) ∈ E , we let

h(i,j)(x) = [0, 0, 0, . . . ,−xi,Sxj,I , xi,Sxj,I , . . . , 0, 0, 0]>.

With these definitions, according to (7.9), when ` ∈ [n], we have that φα,β,γ(x+h`(x))−

φα,β,γ(x) equals to

Πk∈[n],k 6=`x
αk
k,Sx

βk
k,Ix

γk
k,R

[
xα``,S0β`(x`,R + x`,I)

γ` − xα``,Sx
β`
`,Ix

γ`
`,R

]
.

Consequently, when β` 6= 0, the term above equals to φα,β,γ(x). Meanwhile, x`,I and x`,R

are binary variables. Moreover, x`,R+x`,I ≤ 1 for all t ≥ 0. Thus, (x`,I +x`,R)γ`−xγ``,I =

x`,I . Subsequently, we have

φα,β,γ(x + h`(x))− φα,β,γ(x) =
−φα,β,γ(x), if β` 6= 0,

Πk∈[n],k 6=`x
αk
k,Sx

βk
k,Ix

γk
k,Rx

α`
`,Sx`,I , if β` = 0 and γ` 6= 0,

0, otherwise.

(A.42)
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Similarly, for a given (j, i) ∈ E , we have

φα,β,γ(x + h(j,i)(x))− φα,β,γ(x) =

Πk∈[n],k 6=ix
αk
k,Sx

βk
k,Ix

γk
k,Rx

αi
i,Sx

γi
i,R

×
[
(1− xj,I)αi(xi,I + xi,Sxj,I)

βi − xβii,I
]
.

(A.43)

On one hand, when αi 6= 0, we observe that if xj,I = 0, then (1−xj,I)αi(xi,I−xi,Sxj,I)βi−

xβii,I equals to zero, whereas if xj,I = 1, the term equals to −xβii,I .

On the other hand, when αi = 0 and βi = 0, (A.43) equals to 0. Finally, we consider the

case when αi = 0 and βi 6= 0. In this context, it suffices to examine (xi,I+xi,Sxj,I)
βi−xβii,I .

Notice that when xi,S = 0 the sum equals to 0, and xj,I otherwise. Thus, it can be

simplified into xi,Sxj,I . Summarizing the above cases, let

Q = φα,β,γ/x
βi
i,I

we obtain that:

φα,β,γ(x + h(j,i)(x))− φα,β,γ(x) =
−φα,β,γ(x)xj,I , if αi 6= 0,

Qxi,Sxj,I , if αi = 0 and βi 6= 0,

0, otherwise.

(A.44)

Finally, (7.37) is obtained by taking expectation on the sum of |V|+ |E| equations (A.42)

and (A.44).

A.7 Proof of the Results in Chapter 8

Proof of Theorem 37. First, we show that when the initial distribution µ0 and the sys-

tem dynamics (7.2) are given, the Liouville equation (8.23) has a unique solution (µ, µT )

up to a subset of [0, T ]×X of Lebesgue measure zero and (µ, µT ) coincide with the av-

erage occupation measure defined by (8.21) and the average final measure defined by
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(8.22). Let (µ, µT ) be a pair of measures satisfying (8.23). From [201, Lemma 3], µ

can be disintegrated as dµ(t,x) = dµt(x)dt where dt is the Lebesgue measure on [0, T ].

µt(x) is a stochastic kernel on X given t and can be interpreted as the distribution of the

states at time t following the evolution of (7.2) with x0 ∼ µ0. µt(x) is uniquely defined

dt-almost everywhere. As proved in [201, Lemma 3], µt satisfies a continuity equation

which implies µ and µT coincide with the average occupation measure and the average

final measure generated by the family of absolutely continuous admissible trajectories

of (7.2) starting from µ0.

Then solving P can be decomposed into two steps: first find a feasible (µ, µT ) ∈

M+([0, T ] × X ) × M+(X ) to the Liouville equation δT ⊗ µT = δ0 ⊗ µ0 + L∗µ and

then solve the following optimization problem:

Q : sup
µ̃
{
∫
gdµ̃ : µ̃ ≤ µ; µ̃ ∈M+([0, T ]×Xu)}. (A.45)

Since X and Xu are compact with Xu ⊆ X , by [199, Theorem 3.1] the restriction µ̃∗

of µ to Xu defined by (8.27) is the unique optimal solution to Q and sup Q = max Q =∫
gdµ̃∗ =

∫
Xu gdµ.

As the feasible µ in P coincides with the average occupation measure in (8.21), µ̃∗ is also

the µ̃-component of an optimal solution to P and sup P = max P =
∫
gdµ̃∗. When g ≡ 1,

we have max P = µ([0, T ]×Xu) with µ being the average occupation measure defined in

(8.21).

Proof of Theorem 38. The proof follows the same lines as that of [201, Theorem 2].

Define

C = C([0, T ]×Xu)× C([0, T ]×X )× C([0, T ]×X )× C(X )

M=M([0, T ]×Xu)×M([0, T ]×X )×M([0, T ]×X )×M(X )

and let K and K′ denote the positive cones of C and M, respectively. By Riesz-Markov-

Kakutani representation theorem [203], K′ is the topological dual of the cone K. The
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infinite dimensional linear program P can be written as:

sup 〈γ, c〉

s.t.A′γ = β, γ ∈ K′
(A.46)

where the supremum is taken over the vector γ = (µ̃, µ̂, µ, µT ), the linear operator

A′ : K′ → C1([0, T ]×X )∗×M([0, T ]×X ) is defined by A′γ = (δT ⊗µT −L∗µ, µ− µ̃− µ̂)

and β = (δ0 ⊗ µ0, 0) ∈ C1([0, T ] × X )∗ ×M([0, T ] × X ). The vector of functions in

the objective is c = (g, 0, 0, 0). Define the duality bracket between a vector of measures

ν ∈ (M(S))p and a vector of functions h ∈ (C(S))p over a topological space S by

〈h, ν〉 =
∑p

i=1

∫
S [h]id[ν]i. Then 〈γ, c〉 =

∫
gdµ̃.

The dual to (A.46) can be interpreted as:

inf 〈β, z〉

s.t.Az − c ∈ K
(A.47)

where the infimum is over z = (v, w) ∈ C1([0, T ]×X )×C([0, T ]×X ), the linear operator

A : C1([0, T ] × X ) × C([0, T ] × X ) → C is given by Az = (w,w,−Lv − w, v(T, ·)) and

satisfies the adjoint property 〈A′γ, z〉 = 〈γ,Az〉. The linear program (A.47) is exactly

(8.28).

From [216, Theorem 3.10], there is no duality gap between (A.46) and (A.47) if the

supremum of (A.46) is finite and the set P = {(A′γ, 〈γ, c〉) | γ ∈ K′} is closed in the

weak* topology of K′. Since µ̃ is dominated by the average occupation measure µ and

its underlying support is compact, the supremum of (A.46) is finite. To prove that P is

closed, consider a sequence γk = (µ̃k, µ̂k, µk, µkT ) ∈ K′ such thatA′γk → a and 〈γk, c〉 → b

as k → ∞ for some (a, b) ∈ C1([0, T ] × X )∗ ×M([0, T ] × X ) × R. Consider the test

function z1 = (T − t, 0) which gives 〈A′γk, z1〉 = µk([0, T ]×X )→ 〈a, z1〉 <∞; since the

measures µk are non-negative, this implies {µk} is bounded. By taking z2 = (1,−1), we

have 〈A′γk, z2〉 = µkT (X )+µ̃k([0, T ]×Xu)+µ̂k([0, T ]×X )−µk([0, T ]×X )→ 〈a, z2〉 <∞;

since {µk} is bounded, by similar arguments the sequences {µ̃k}, {µ̂k} and {µkT } are
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bounded as well.

As a result, {γk} is bounded and we can find a ball B in M with {γk} ⊂ B. From the

weak* compactness of the unit ball (Alaoglu’s theorem [217, Section 5.10, Theorem 1])

there is a subsequence {γki} that weak*-converges to some γ ∈ K′. Notice that A′

is weak*-continuous because Az ∈ C for all z ∈ C1([0, T ] × X ) × C([0, T ] × X ). So

(a, b) = limi→∞(A′γki , 〈γki , c〉) = (A′γ, 〈γ, c〉) ∈ P by the continuity of A′ and P is

closed.

Proof of Theorem 39. The proof of strong duality follows from standard SDP duality

theory. Let ∆µ = (µ̃, µ̂, µ, µT ) be the optimal solution to P and ∆y = (ỹ, ŷ,y,yT)

be their corresponding moment sequences. Any finite truncation of ∆y gives a feasible

solution to Pr. As X and Xu have non-empty interior, we have the truncation of ∆y is

strictly feasible for Pr. By Slater’s condition [109], there is no duality gap between Pr

and Dr, i.e., p∗r = d∗r .

The proof of convergence follows from [200, Theorem 3.6]. Since [0, T ], X and Xu

are compact sets, we can assume after appropriate scaling T = 1 and X × Xu ⊆

[−1, 1]nX × [−1, 1]nXu , which implies that the feasible set of the semidefinite program

Pr is compact. Let ∆∗r = (ỹ∗r , ŷ
∗
r ,y
∗
r ,yT

∗
r) be the optimal solution of Pr and complete

the finite vectors (ỹ∗r , ŷ
∗
r ,y
∗
r ,yT

∗
r) with zeros to make them infinite sequences. By a

standard diagonal argument, there is a subsequence {rk} and a tuple of infinite vec-

tors ∆∗ = (ỹ∗, ŷ∗,y∗,yT
∗) such that ∆∗rk → ∆∗ as k → ∞, where the convergence

is interpreted as elementary-wise. Since the infinite vector ỹ∗ in ∆∗ is the limit point

of a subsequence of the optimal solutions ỹ∗r of Pr, ỹ∗ satisfies all the constraints in

Pr as r → ∞. Then by Putinar’s Positivstellensatz, ỹ∗ has a representing measure µ̃∗

supported on [0, T ] × Xu. Similarly, ŷ∗,y∗ and yT
∗ have their representing measures

µ̂∗, µ∗ and µ∗T with corresponding supports, respectively.

As problem Pr is a relaxation of P, p∗r ≥ p∗ for each r. Thus we have limk→∞ sup Prk =

limk→∞ Lỹ∗rk
(g) = Lỹ∗(g) =

∫
gdµ̃∗ ≥ p∗. On the other hand, Ar(∆∗) = limk→∞Ar(∆∗rk) =

br for each r ∈ N. Let (µ̃∗, µ̂∗, µ∗, µ∗T ) be the tuple of representing measures of ∆∗. As
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measures on compact sets are determined by moments, (µ̃∗, µ̂∗, µ∗, µ∗T ) is a feasible so-

lution to P which implies
∫
gdµ̃∗ ≤ p∗. Hence

∫
gdµ̃∗ = p∗ and (µ̃∗, µ̂∗, µ∗, µ∗T ) is an

optimal solution of P. For any r we have p∗r ≥ p∗r+1 because as r increases, the con-

straints in Pr become more restrict. As a result, p∗rk ↓ p
∗ and furthermore p∗r ↓ p∗. By

strong duality, d∗r = p∗r ↓ p∗ = d∗.
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