2,789 research outputs found

    Publish or impoverish : an investigation of the monetary reward system of science in China (1999-2016)

    Full text link
    Although monetary rewards have been used for recognizing scientific achievement since the eighteenth century, it is not regarded as the major reward system in science as described by Merton (1973), in which scientists publish their works and receive the recognition of their peers as the reward. Since academic prizes consisting of cash rewards are awarded only to very few scientific elites, they are considered as a metaphors of prestige rather than simply large sums of money (Zuckerman, 1992). However, the reward system in science changed when the monetary reward incentive for publication was introduced in 1980s. It is reported that this incentive can promote research productivity (Franzoni et al., 2011) but might create a negative goal displacement effect (Frey et al., 2013; Osterloh and Frey, 2014). Since the early 1990s, Chinese research institutions have initiated cash-per-publication reward polices in which Chinese scholars can get cash for each eligible publication. The purpose of publishing their works is not only to advance knowledge and win recognition, but also to earn cash (Sun and Zhang, 2010; Wang, 2016). Since these cash-per-publication reward policies vary by institution and some policies are internal or confidential, they have never been systematically investigated except for in some case studies. The purpose of this study is to present the landscape of the cash-per-publication reward policy in China[1] and reveal its trend since the late 1990s

    The first Chinese student space shuttle getaway special program

    Get PDF
    The first Chinese Getaway Special program is described. Program organization, the student proposal evaluation procedure, and the objectives of some of the finalist's experiments are covered. The two experiments selected for eventual flight on the space shuttle are described in detail. These include: (1) the control of debris in the cabin of the space shuttle; and (2) the solidification of two immiscible liquids in space

    Geometric phase and quantum phase transition in an inhomogeneous periodic XY spin-1/2 model

    Full text link
    The notion of geometric phase has been recently introduced to analyze the quantum phase transitions of many-body systems from the geometrical perspective. In this work, we study the geometric phase of the ground state for an inhomogeneous period-two anisotropic XY model in a transverse field. This model encompasses a group of familiar spin models as its special cases and shows a richer critical behavior. The exact solution is obtained by mapping on a fermionic system through the Jordan-Wigner transformation and constructing the relevant canonical transformation to realize the diagonalization of the Hamiltonian coupled in the kk-space. The results show that there may exist more than one quantum phase transition point at some parameter regions and these transition points correspond to the divergence or extremum properties of the Berry curvature.Comment: 6 pages, 3 figures. As a backup of a previous work and some typos in the published version are fixe

    Abelian and Non-Abelian Quantum Geometric Tensor

    Full text link
    We propose a generalized quantum geometric tenor to understand topological quantum phase transitions, which can be defined on the parameter space with the adiabatic evolution of a quantum many-body system. The generalized quantum geometric tenor contains two different local measurements, the non-Abelian Riemannian metric and the non-Abelian Berry curvature, which are recognized as two natural geometric characterizations for the change of the ground-state properties when the parameter of the Hamiltonian varies. Our results show the symmetry-breaking and topological quantum phase transitions can be understood as the singular behavior of the local and topological properties of the quantum geometric tenor in the thermodynamic limit.Comment: 5 pages, 2 figure

    The Software Correlator of the Chinese VLBI Network

    Get PDF
    The software correlator of the Chinese VLBI Network (CVN) has played an irreplaceable role in the CVN routine data processing, e.g., in the Chinese lunar exploration project. This correlator will be upgraded to process geodetic and astronomical observation data. In the future, with several new stations joining the network, CVN will carry out crustal movement observations, quick UT1 measurements, astrophysical observations, and deep space exploration activities. For the geodetic or astronomical observations, we need a wide-band 10-station correlator. For spacecraft tracking, a realtime and highly reliable correlator is essential. To meet the scientific and navigation requirements of CVN, two parallel software correlators in the multiprocessor environments are under development. A high speed, 10-station prototype correlator using the mixed Pthreads and MPI (Massage Passing Interface) parallel algorithm on a computer cluster platform is being developed. Another real-time software correlator for spacecraft tracking adopts the thread-parallel technology, and it runs on the SMP (Symmetric Multiple Processor) servers. Both correlators have the characteristic of flexible structure and scalability

    Significantly reduced radiation dose to operators during percutaneous vertebroplasty using a new cement delivery device

    Get PDF
    BACKGROUND: Percutaneous vertebroplasy (PVP) might lead to significant radiation exposure to patients, operators, and operating room personnel. Therefore, radiaton exposure is a concern. The aim of this study was to present a remote control cement delivery device and study whether it can reduce dose exposue to operators. METHODS: After meticulous preoperative preparation, a series of 40 osteoporosis patients were treated with unilateral approach PVP using the new cement delivery divice. We compared levels of fluoroscopic exposure to operator standing on different places during operation. group A: operator stood about 4 meters away from X-ray tube behind the lead sheet. group B: operator stood adjacent to patient as using conventional manual cement delivery device. RESULTS: During whole operation process, radiation dose to the operator (group A) was 0.10 ± 0.03 (0.07-0.15) μSv, group B was 12.09 ± 4.67 (10–20) μSv. a difference that was found to be statistically significant (P < 0.001) between group A and group B. CONCLUSION: New cement delivery device plus meticulous preoperative preparation can significantly decrease radiation dose to operators

    Progressive decay of Ca2+ homeostasis in the development of diabetic cardiomyopathy

    Get PDF
    BACKGROUND: Cardiac dysfunction in diabetic cardiomyopathy may be associated with abnormal Ca(2+) homeostasis. This study investigated the effects of alterations in Ca(2+) homeostasis and sarcoplasmic reticulum Ca(2+)-associated proteins on cardiac function in the development of diabetic cardiomyopathy. METHODS: Sprague–Dawley rats were divided into 4 groups (n = 12, each): a control group, and streptozotocin-induced rat models of diabetes groups, examined after 4, 8, or 12 weeks. Evaluations on cardiac structure and function were performed by echocardiography and hemodynamic examinations, respectively. Cardiomyocytes were isolated and spontaneous Ca(2+) spark images were formed by introducing fluorescent dye Fluo-4 and obtained with confocal scanning microscopy. Expressions of Ca(2+)-associated proteins were assessed by Western blotting. RESULTS: Echocardiography and hemodynamic measurements revealed that cardiac dysfunction is associated with the progression of diabetes, which also correlated with a gradual but significant decline in Ca(2+) spark frequency (in the 4-, 8- and 12-week diabetic groups). However, Ca(2+) spark decay time constants increased significantly, relative to the control group. Expressions of ryanodine receptor 2 (RyR2), sarcoplasmic reticulum Ca(2+)-2ATPase (SERCA) and Na(+)/Ca(2+) exchanger (NCX1) were decreased, together with quantitative alterations in Ca(2+)regulatory proteins, FKBP12.6 and phospholamban progressively and respectively in the diabetic rats. CONCLUSIONS: Ca(2+) sparks exhibited a time-dependent decay with progression of diabetic cardiomyopathy, which may partly contribute to cardiac dysfunction. This abnormality may be attributable to alterations in the expressions of some Ca(2+)-associated proteins

    The Euler Number of Bloch States Manifold and the Quantum Phases in Gapped Fermionic Systems

    Full text link
    We propose a topological Euler number to characterize nontrivial topological phases of gapped fermionic systems, which originates from the Gauss-Bonnet theorem on the Riemannian structure of Bloch states established by the real part of the quantum geometric tensor in momentum space. Meanwhile, the imaginary part of the geometric tensor corresponds to the Berry curvature which leads to the Chern number characterization. We discuss the topological numbers induced by the geometric tensor analytically in a general two-band model. As an example, we show that the zero-temperature phase diagram of a transverse field XY spin chain can be distinguished by the Euler characteristic number of the Bloch states manifold in a (1+1)-dimensional Bloch momentum space
    • …
    corecore