223 research outputs found

    Remote Sensing Retrieval Study of the Surface Kinetic Parameters in the Yangtze Estuary and Its Adjacent Waters

    Get PDF
    Wind and current are significant parameters in the hydrodynamic processes, making a significant effect on the expansion of the Yangtze (Changjiang River) Diluted Water, sediment transport, resuspension and shelf circulation in the Yangtze Estuary. They are indispensable as input parameters in the numerical simulation of these phenomena. Synthetic aperture radar (SAR) can acquire data with different resolutions (down to 1 m) and coverage (up to 400 km) over a site during day or night time under all weather conditions, being capable of providing ocean surface kinetic parameters with high resolution. SAR images were collected to verify and improve the validity of wind direction retrieval by 2D fast Fourier transformation (FFT) method, wind speed by CMOD4 model and current by Doppler frequency method. These SAR-retrieved wind and current results were analyzed and assessed against in situ data and corresponding numerically simulated surface wind and current fields. Comparisons to the in situ and simulations show that 1) SAR can measure sea surface wind fields with a high resolution at sub-km scales and provide a powerful complement to conventional wind measurement techniques. 2) The Doppler shift anomaly measurements from SAR images are able to capture quantitative surface currents, thus are helpful to reveal the multi-scale upper layer dynamics around the East China Sea

    Life-Add: Lifetime Adjustable Design for WiFi Networks with Heterogeneous Energy Supplies

    Get PDF
    WiFi usage significantly reduces the battery lifetime of handheld devices such as smartphones and tablets, due to its high energy consumption. In this paper, we propose "Life-Add": a Lifetime Adjustable design for WiFi networks, where the devices are powered by battery, electric power, and/or renewable energy. In Life-Add, a device turns off its radio to save energy when the channel is sensed to be busy, and sleeps for a random time period before sensing the channel again. Life-Add carefully controls the devices' average sleep periods to improve their throughput while satisfying their operation time requirement. It is proven that Life-Add achieves near-optimal proportional-fair utility performance for single access point (AP) scenarios. Moreover, Life-Add alleviates the near-far effect and hidden terminal problem in general multiple AP scenarios. Our ns-3 simulations show that Life-Add simultaneously improves the lifetime, throughput, and fairness performance of WiFi networks, and coexists harmoniously with IEEE 802.11.Comment: This is the technical report of our WiOpt paper. The paper received the best student paper award at IEEE WiOpt 2013. The first three authors are co-primary author

    Coastal Disasters and Remote Sensing Monitoring Methods

    Get PDF
    Coastal disaster is abnormal changes caused by climate change, human activities, geological movement or natural environment changes. According to formation cause, marine disasters as storm surges, waves, Tsunami coastal erosion, sea-level rise, red tide, seawater intrusion, marine oil spill and soil salinization. Remote sensing technology has real-time and large-area advantages in promoting the monitoring and forecast ability of coastal disaster. Relative to natural disasters, ones caused by human factors are more likely to be monitored and prevented. In this paper, we use several remote sensing methods to monitor or forecast three kinds of coastal disaster cause by human factors including red tide, sea-level rise and oil spilling, and make proposals for infrastructure based on the research results. The chosen method of monitoring red tide by inversing chlorophyll-a concentration is improved OC3M Model, which is more suitable for the coastal zone and higher spatial resolution than the MODIS chlorophyll-a production. We monitor the sea-level rise in coastal zone through coastline changes without artificial modifications. The improved Lagrangian model can simulate the trajectory of oil slick efficiently. Making the infrastructure planning according the coastal disasters and features of coastline contributes to prevent coastal disaster and coastal ecosystem protection. Multi-source remote sensing data can effectively monitor and prevent coastal disaster, and provide planning advices for coastal infrastructure construction

    When Queueing Meets Coding: Optimal-Latency Data Retrieving Scheme in Storage Clouds

    Full text link
    In this paper, we study the problem of reducing the delay of downloading data from cloud storage systems by leveraging multiple parallel threads, assuming that the data has been encoded and stored in the clouds using fixed rate forward error correction (FEC) codes with parameters (n, k). That is, each file is divided into k equal-sized chunks, which are then expanded into n chunks such that any k chunks out of the n are sufficient to successfully restore the original file. The model can be depicted as a multiple-server queue with arrivals of data retrieving requests and a server corresponding to a thread. However, this is not a typical queueing model because a server can terminate its operation, depending on when other servers complete their service (due to the redundancy that is spread across the threads). Hence, to the best of our knowledge, the analysis of this queueing model remains quite uncharted. Recent traces from Amazon S3 show that the time to retrieve a fixed size chunk is random and can be approximated as a constant delay plus an i.i.d. exponentially distributed random variable. For the tractability of the theoretical analysis, we assume that the chunk downloading time is i.i.d. exponentially distributed. Under this assumption, we show that any work-conserving scheme is delay-optimal among all on-line scheduling schemes when k = 1. When k > 1, we find that a simple greedy scheme, which allocates all available threads to the head of line request, is delay optimal among all on-line scheduling schemes. We also provide some numerical results that point to the limitations of the exponential assumption, and suggest further research directions.Comment: Original accepted by IEEE Infocom 2014, 9 pages. Some statements in the Infocom paper are correcte

    DC-SIGN Increases Japanese Encephalitis Virus Infection

    Get PDF
    Japanese Encephalitis virus (JEV) is a mosquito borne flavivirus that infects macrophages, monocytes and dendritic cells (DCs) during in vivo replication. The C-type lectins DC-SIGN and DC-SIGNR have been reported to act as cell attachment factors for diverse array of pathogens. In this study, the effect of these lectins on JEV infection was investigated after the generation of 293T-SIGN (R) cell lines expressing DC-SIGN and DC-SIGNR receptors. It was observed that only DC-SIGN but not the DC-SIGNR can act as a viral attachment factor in case of JEV infection. The infection to cells expressing DC-SIGN was efficiently blocked by anti-DC-SIGN and mannan molecules. It was also found that insect derived JEV has higher affinity for DC-SIGN as compare to the mammalian derived JEV. These results initially suggest that DC-SIGN could act as viral attachment receptors (VAR) for JEV and enhance JEV infection

    Quantifying the Individual Differences of Driver' Risk Perception with Just Four Interpretable Parameters

    Full text link
    There will be a long time when automated vehicles are mixed with human-driven vehicles. Understanding how drivers assess driving risks and modelling their individual differences are significant for automated vehicles to develop human-like and customized behaviors, so as to gain people's trust and acceptance. However, the reality is that existing driving risk models are developed at a statistical level, and no one scenario-universal driving risk measure can correctly describe risk perception differences among drivers. We proposed a concise yet effective model, called Potential Damage Risk (PODAR) model, which provides a universal and physically meaningful structure for driving risk estimation and is suitable for general non-collision and collision scenes. In this paper, based on an open-accessed dataset collected from an obstacle avoidance experiment, four physical-interpretable parameters in PODAR, including prediction horizon, damage scale, temporal attenuation, and spatial attention, are calibrated and consequently individual risk perception models are established for each driver. The results prove the capacity and potential of PODAR to model individual differences in perceived driving risk, laying the foundation for autonomous driving to develop human-like behaviors.Comment: 14 pages, 9 figures, 1 tabl

    Japanese Encephalitis Virus wild strain infection suppresses dendritic cells maturation and function, and causes the expansion of regulatory T cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Japanese encephalitis (JE) caused by Japanese encephalitis virus (JEV) accounts for acute illness and death. However, few studies have been conducted to unveil the potential pathogenesis mechanism of JEV. Dendritic cells (DCs) are the most prominent antigen-presenting cells (APCs) which induce dual humoral and cellular responses. Thus, the investigation of the interaction between JEV and DCs may be helpful for resolving the mechanism of viral escape from immune surveillance and JE pathogenesis.</p> <p>Results</p> <p>We examined the alterations of phenotype and function of DCs including bone marrow-derived DCs (bmDCs) <it>in vitro </it>and spleen-derived DCs (spDCs) <it>in vivo </it>due to JEV P3 wild strain infection. Our results showed that JEV P3 infected DCs <it>in vitro </it>and <it>in vivo</it>. The viral infection inhibited the expression of cell maturation surface markers (CD40, CD80 and CD83) and MHCⅠ, and impaired the ability of P3-infected DCs for activating allogeneic naïve T cells. In addition, P3 infection suppressed the expression of interferon (IFN)-α and tumor necrosis factor (TNF)-α but enhanced the production of chemokine (C-C motif) ligand 2 (CCL2) and interleukin (IL)-10 of DCs. The infected DCs expanded the population of CD4+ Foxp3+ regulatory T cell (Treg).</p> <p>Conclusion</p> <p>JEV P3 infection of DCs impaired cell maturation and T cell activation, modulated cytokine productions and expanded regulatory T cells, suggesting a possible mechanism of JE development.</p

    Nitrate transport velocity data in the global unsaturated zones

    Get PDF
    Nitrate pollution in groundwater, which is an international problem, threatens human health and the environment. It could take decades for nitrate to transport in the groundwater system. When understanding the impacts of this nitrate legacy on water quality, the nitrate transport velocity (vN) in the unsaturated zone (USZ) is of great significance. Although some local USZ vN data measured or simulated are available, there has been no such a dataset at the global scale. Here, we present a Global-scale unsaturated zone Nitrate transport Velocity dataset (GNV) generated from a Nitrate Time Bomb (NTB) model using global permeability and porosity and global average annual groundwater recharge data. To evaluate GNV, a baseline dataset of USZ vN was created using locally measured data and global lithological data. The results show that 94.50% of GNV match the baseline USZ vN dataset. This dataset will largely contribute to research advancement in the nitrate legacy in the groundwater system, provide evidence for managing nitrate water pollution, and promote international and interdisciplinary collaborations
    • …
    corecore