45 research outputs found
Single-cell chromatin accessibility profiling of cell-state-specific gene regulatory programs during mouse organogenesis
In mammals, early organogenesis begins soon after gastrulation, accompanied by specification of various type of progenitor/precusor cells. In order to reveal dynamic chromatin landscape of precursor cells and decipher the underlying molecular mechanism driving early mouse organogenesis, we performed single-cell ATAC-seq of E8.5-E10.5 mouse embryos. We profiled a total of 101,599 single cells and identified 41 specific cell types at these stages. Besides, by performing integrated analysis of scATAC-seq and public scRNA-seq data, we identified the critical cis-regulatory elements and key transcription factors which drving development of spinal cord and somitogenesis. Furthermore, we intersected accessible peaks with human diseases/traits-related loci and found potential clinical associated single nucleotide variants (SNPs). Overall, our work provides a fundamental source for understanding cell fate determination and revealing the underlying mechanism during postimplantation embryonic development, and expand our knowledge of pathology for human developmental malformations
An integrated chromatin accessibility and transcriptome landscape of human pre-implantation embryos
Early human embryonic development involves extensive changes in chromatin structure and transcriptional activity. Here the authors present LiCAT-seq, a method enabling simultaneous profiling of chromatin accessibility and gene expression with ultra-low input of cells and map chromatin accessibility and transcriptome landscapes for human pre-implantation embryos
Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity
Heterogeneity in gene expression and epigenetic states exists across individual cells. Here, the authors develop scCAT-seq, a technique for simultaneously performing ATAC-seq and RNA-seq within the same single cell
Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays.
Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.This work is part of the ââSpatioTemporal Omics Consortiumââ (STOC) paper package. A list of STOC members is available at: http://sto-consortium.org. We would
like to thank the MOTIC China Group, Rongqin Ke (Huaqiao University, Xiamen,
China), Jiazuan Ni (Shenzhen University, Shenzhen, China), Wei Huang (Center
for Excellence in Brain Science and Intelligence Technology, Chinese Academy
of Sciences, Shanghai, China), and Jonathan S. Weissman (Whitehead Institute,
Boston, USA) for their help. This work was supported by the grant of Top Ten
Foundamental Research Institutes of Shenzhen, the Shenzhen Key Laboratory
of Single-Cell Omics (ZDSYS20190902093613831), and the Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011); Longqi Liu
was supported by the National Natural Science Foundation of China
(31900466) and Miguel A. Estebanâs laboratory at the Guangzhou Institutes of
Biomedicine and Health by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), National Natural Science Foundation of China (92068106), and the Guangdong Basic and Applied Basic Research
Foundation (2021B1515120075).S
Cell transcriptomic atlas of the non-human primate Macaca fascicularis.
Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M.âfascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.We thank W. Liu and L. Xu from the Huazhen Laboratory Animal Breeding
Centre for helping in the collection of monkey tissues, D. Zhu and H. Li from the Bioland
Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) for
technical help, G. Guo and H. Sun from Zhejiang University for providing HCL and MCA gene
expression data matrices, G. Dong and C. Liu from BGI Research, and X. Zhang, P. Li and C. Qi
from the Guangzhou Institutes of Biomedicine and Health for experimental advice or providing
reagents. This work was supported by the Shenzhen Basic Research Project for Excellent
Young Scholars (RCYX20200714114644191), Shenzhen Key Laboratory of Single-Cell Omics
(ZDSYS20190902093613831), Shenzhen Bay Laboratory (SZBL2019062801012) and Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011). In
addition, L.L. was supported by the National Natural Science Foundation of China (31900466),
Y. Hou was supported by the Natural Science Foundation of Guangdong Province
(2018A030313379) and M.A.E. was supported by a Changbai Mountain Scholar award
(419020201252), the Strategic Priority Research Program of the Chinese Academy of Sciences
(XDA16030502), a Chinese Academy of SciencesâJapan Society for the Promotion of Science
joint research project (GJHZ2093), the National Natural Science Foundation of China
(92068106, U20A2015) and the Guangdong Basic and Applied Basic Research Foundation
(2021B1515120075). M.L. was supported by the National Key Research and Development
Program of China (2021YFC2600200).S
Collective territoriality as a major barrier to interagency government data sharing in China: A literature review
This poster presents a research study, which aims to study how territoriality hinders interagency government data sharing (IDS) in China. Aiming at establishing a theoretical basis for future studies, this study employed a structured literature review approach, which consisted a systematic literature search, a liter- ature screening and a thematic analysis. A total of 1,495 articles were retrieved from the China Academic Journal Network Publishing Database (CAJD) and the China Science Periodical Database (CSPD). After screening, 55 articles were in- cluded and analysed using a thematic approach. The literature analysis identified that government agencies presented collective behaviours of territory marking and defending, which are resulted by a TIAO-KUAI government structure and a proprietary data ownership. This poster provides a perspective on the IDS devel- opment in China and offers useful insights which can be shared across international borders