42 research outputs found

    Hyaluronic acid in viscous malignant mesothelioma pleural effusion

    Get PDF
    © 2020 The Authors. Respirology Case Reports published by John Wiley & Sons Australia, Ltd on behalf of The Asian Pacific Society of Respirology Malignant pleural effusion (MPE) is common with mesothelioma. We report two cases of extraordinarily viscous MPEs associated with mesothelioma. The viscosity prohibited spontaneous gravity-dependent drainage via indwelling pleural catheters. Our ex vivo experiments found very high hyaluronic acid (HA) content within the fluid. Treatment of the fluid with hyaluronidase, but not with deoxyribonucleases, significantly reduced fluid viscosity. The results provide proof that HA can contribute to high viscosity of pleural fluid in mesothelioma. Research into strategies of counteracting HA properties in the management of MPEs may provide further insight

    Association of Caucasian-identified variants with colorectal cancer risk in Singapore Chinese

    Get PDF
    Background: Genome-wide association studies (GWAS) in Caucasians have identified fourteen index single nucleotide polymorphisms (iSNPs) that influence colorectal cancer (CRC) risk. Methods: We investigated the role of eleven iSNPs or surrogate SNPs (sSNPs), in high linkage disequilibrium (LD, r2≥0.8) and within 100 kb vicinity of iSNPs, in 2,000 age- and gender-matched Singapore Chinese (SCH) cases and controls. Results: Only iSNP rs6983267 at 8q24.21 and sSNPs rs6695584, rs11986063, rs3087967, rs2059254, and rs7226855 at 1q41, 8q23.3, 11q23.1, 16q22.1 and 18q21.1 respectively showed evidence of association with CRC risk, with odds ratios (OR) ranging from 1.13 to 1.40. sSNP rs827401 at 10p14 was associated with rectal cancer risk (OR = 0.74, 95% CI 0.63-0.88) but not disease prognosis (OR = 0.91, 95% CI 0.69-1.20). Interestingly, sSNP rs3087967 at 11q23.1 was associated with CRC risk in men (OR = 1.34, 95% CI 1.14-1.58) but not women (OR = 1.07, 95% CI: 0.88-1.29), suggesting a gender-specific role. Half of the Caucasian-identified variants, including the recently fine-mapped BMP pathway loci, BMP4, GREM1, BMP2 and LAMA 5, did not show any evidence for association with CRC in SCH (OR ~1; p-value >0.1). Comparing the results of this study with that of the Northern and Hong Kong Chinese, only variants at chromosomes 8q24.21, 10p14, 11q23.1 and 18q21.1 were replicated in at least two out of the three Chinese studies. Conclusions: The contrasting results between Caucasians and Chinese could be due to different LD patterns and allelic frequencies or genetic heterogeneity. The results suggest that additional common variants contributing to CRC predisposition remained to be identified. © 2012 Thean et al

    The Fear of Missing Out

    No full text
    This paper seeks to conceptualize the phenomenon known as the “Fear of Missing Out” by developing and validating a measurement scale – “Fear of Missing Out” (FOMOSCALE) to be used in a marketing context. It will also further explore various antecedents that may impact on FOMO. The study suggests an alternative approach towards the conceptualization of FOMO by defining it as a personality trait as opposed to an outcome of a behavior

    Chromosome 19q13 disruption alters expressions of CYP2A7, MIA and MIA-RAB4B lncRNA and contributes to FAP-like phenotype in APC mutation-negative familial colorectal cancer patients.

    No full text
    Familial adenomatous polyposis (FAP) is an autosomal-dominantly inherited form of colorectal cancer (CRC) caused by mutation in the adenomatous polyposis coli (APC) gene. Our ability to exhaustively screen for APC mutations identify microsatellite-stable and APC-mutation negative familial CRC patients, enabling us to search for novel genes. We performed genome-wide scan on two affected siblings of one family and 88 ethnicity- and gender-matched healthy controls to identify deletions shared by the siblings. Combined loss of heterozygosity, copy number and allelic-specific copy number analysis uncovered 5 shared deletions. Long-range polymerase chain reaction (PCR) confirmed chromosome 19q13 deletion, which was subsequently found in one other family. The 32 kb deleted region harbors the CYP2A7 gene and was enriched with enhancer, repressor and insulator sites. The wildtype allele was lost in the polyps of the proband. Further, real-time RT-PCR assays showed that expressions of MIA and MIA-RAB4B located 35 kb upstream of the deletion, were up-regulated in the polyps compared to the matched mucosa of the proband. MIA-RAB4B, the read-through long non-coding RNA (lncRNA), RAB4B, PIM2 and TAOK1 share common binding site of a microRNA, miR-24, in their 3'UTRs. PIM2 and TAOK1, two target oncogenes of miR-24, were co-ordinately up-regulated with MIA-RAB4B in the polyps, suggesting that MIA-RAB4B could function as competitive endogenous RNA to titrate miR-24 away from its other targets. The data suggest that the 19.13 deletion disrupted chromatin boundary, leading to altered expression of several genes and lncRNA, could contribute to colorectal cancer via novel genetic and epigenetic mechanisms

    Mutational analysis of hedgehog signaling pathway genes in human malignant mesothelioma

    Get PDF
    BACKGROUND: The Hedgehog (HH) signaling pathway is critical for embryonic development and adult homeostasis. Recent studies have identified regulatory roles for this pathway in certain cancers with mutations in the HH pathway genes. The extent to which mutations of the HH pathway genes are involved in the pathogenesis of malignant mesothelioma (MMe) is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Real-time PCR analysis of HH pathway genes PTCH1, GLI1 and GLI2 were performed on 7 human MMe cell lines. Exon sequencing of 13 HH pathway genes was also performed in cell lines and human MMe tumors. In silico programs were used to predict the likelihood that an amino-acid substitution would have a functional effect. GLI1, GLI2 and PTCH1 were highly expressed in MMe cells, indicative of active HH signaling. PTCH1, SMO and SUFU mutations were found in 2 of 11 MMe cell lines examined. A non-synonymous missense SUFU mutation (p.T411M) was identified in LO68 cells. In silico characterization of the SUFU mutant suggested that the p.T411M mutation might alter protein function. However, we were unable to demonstrate any functional effect of this mutation on Gli activity. Deletion of exons of the PTCH1 gene was found in JU77 cells, resulting in loss of one of two extracellular loops implicated in HH ligand binding and the intracellular C-terminal domain. A 3-bp insertion (69_70insCTG) in SMO, predicting an additional leucine residue in the signal peptide segment of SMO protein was also identified in LO68 cells and a MMe tumour. CONCLUSIONS/SIGNIFICANCE: We identified the first novel mutations in PTCH1, SUFU and SMO associated with MMe. Although HH pathway mutations are relatively rare in MMe, these data suggest a possible role for dysfunctional HH pathway in the pathogenesis of a subgroup of MMe and help rationalize the exploration of HH pathway inhibitors for MMe therapy

    Chromosome 19q13 disruption alters expressions of <i>CYP2A7</i>, <i>MIA</i> and <i>MIA-RAB4B</i> lncRNA and contributes to FAP-like phenotype in <i>APC</i> mutation-negative familial colorectal cancer patients - Fig 4

    No full text
    <p><b>Relative quantitation of (A) <i>MIA</i> (B) <i>MIA-RAB4B</i> (C) <i>PIM2</i> and (D) <i>TAOK1</i> transcripts in the polyps normalized to matched mucosa of 344 and 421 respectively.</b><i>MIA-RAB4B</i> is the read-through lncRNAs of <i>MIA</i> and <i>RAB4B</i>. <i>PIM2</i> and <i>TAOK1</i> are two other target oncogenes of miR-24.</p

    Tissue plasminogen activator potently stimulates pleural effusion via a monocyte chemotactic protein-1-dependent mechanism

    No full text
    Copyright © 2015 by the American Thoracic Society. Pleural infection is common. Evacuation of infected pleural fluid is essential for successful treatment, but it is often difficult because of adhesions/loculations within the effusion and the viscosity of the fluid. Intrapleural delivery of tissue plasminogen activator (tPA) (to break the adhesions) and deoxyribonuclease (DNase) (to reduce fluid viscosity) has recently been shown to improve clinical outcomes in a large randomized study of pleural infection. Clinical studies of intrapleural fibrinolytic therapy have consistently shown subsequent production of large effusions, the mechanism(s) of which are unknown. We aimed to determine the mechanism by which tPA induces exudative fluid formation. Intrapleural tPA, with or without DNase, significantly induced pleural fluid accumulation in CD1 mice (tPA alone: median [interquartile range], 53.5 [30-355] µl) compared with DNase alone or vehicle controls (both, 0.0 [0.0-0.0] µl) after 6 hours. Fluid induction was reproduced after intrapleural delivery of streptokinase and urokinase, indicating a class effect. Pleural fluid monocyte chemotactic protein (MCP)-1 levels strongly correlated with effusion volume (r = 0.7302; P = 0.003), and were significantly higher than MCP-1 levels in corresponding sera. Mice treated with anti-MCP-1 antibody (P &lt; 0.0001) or MCP-1 receptor antagonist (P = 0.0049) demonstrated a significant decrease in tPA-induced pleural fluid formation (by up to 85%). Our data implicate MCP-1 as the key molecule governing tPA-induced fluid accumulation. The role of MCP-1 in the development of other exudative effusions warrants examination
    corecore