5,787 research outputs found

    Roaring high and low: composition and possible functions of the Iberian stag's vocal repertoire

    Get PDF
    We provide a detailed description of the rutting vocalisations of free-ranging male Iberian deer (Cervus elaphus hispanicus, Hilzheimer 1909), a geographically isolated and morphologically differentiated subspecies of red deer Cervus elaphus. We combine spectrographic examinations, spectral analyses and automated classifications to identify different call types, and compare the composition of the vocal repertoire with that of other red deer subspecies. Iberian stags give bouts of roars (and more rarely, short series of barks) that are typically composed of two different types of calls. Long Common Roars are mostly given at the beginning or at the end of the bout, and are characterised by a high fundamental frequency (F0) resulting in poorly defined formant frequencies but a relatively high amplitude. In contrast, Short Common Roars are typically given in the middle or at the end of the bout, and are characterised by a lower F0 resulting in relatively well defined vocal tract resonances, but low amplitude. While we did not identify entirely Harsh Roars (as described in the Scottish red deer subspecies (Cervus elaphus scoticus), a small percentage of Long Common Roars contained segments of deterministic chaos. We suggest that the evolution of two clearly distinct types of Common Roars may reflect divergent selection pressures favouring either vocal efficiency in high pitched roars or the communication of body size in low-pitched, high spectral density roars highlighting vocal tract resonances. The clear divergence of the Iberian red deer vocal repertoire from those of other documented European red deer populations reinforces the status of this geographical variant as a distinct subspecies

    Antiproton collisions with excited positronium

    Get PDF
    We present results of calculations of several processes resulting from positronium (Ps) collisions with antiprotons: antihydrogen formation, Ps breakup, and nPs-changing collisions. Calculations utilize the quantum convergent close-coupling (CCC) method and the classical trajectory Monte Carlo (CTMC) method. We identify a region of Ps principal quantum numbers nPs and Ps energies where the classical description is valid and where the CCC calculations become computationally too expensive. This allows us to present the most complete and reliable set of cross sections in a broad range of nPs and initial orbital momentum quantum numbers lPs which are necessary for experiments with antihydrogen at CERN

    The Luminosity Function of Galaxies in Compact Groups

    Get PDF
    From R-band images of 39 Hickson compact groups (HCGs), we use galaxy counts to determine a luminosity function extending to M_R=-14.0, approximately two magnitudes deeper than previous compact group luminosity functions. We find that a single Schechter function is a poor fit to the data, so we fit a composite function consisting of separate Schechter functions for the bright and faint galaxies. The bright end is best fit with M^*=-21.6 and alpha=-0.52 and the faint end with M^*=-16.1 and alpha=-1.17. The decreasing bright end slope implies a deficit of intermediate luminosity galaxies in our sample of HCGs and the faint end slope is slightly steeper than that reported for earlier HCG luminosity functions. Furthermore, luminosity functions of subsets of our sample reveal more substantial dwarf populations for groups with x-ray halos, groups with tidal dwarf candidates, and groups with a dominant elliptical or lenticular galaxy. Collectively, these results support the hypothesis that within compact groups, the initial dwarf galaxy population is replenished by "subsequent generations" formed in the tidal debris of giant galaxy interactions.Comment: 26 pages, to be published in The Astrophysical Journal, 8 greyscale plates (figures 1 and 2) can be retrieved at http://www.astro.psu.edu/users/sdh/pubs.htm

    Self-trapping at the liquid vapor critical point

    Full text link
    Experiments suggest that localization via self-trapping plays a central role in the behavior of equilibrated low mass particles in both liquids and in supercritical fluids. In the latter case, the behavior is dominated by the liquid-vapor critical point which is difficult to probe, both experimentally and theoretically. Here, for the first time, we present the results of path-integral computations of the characteristics of a self-trapped particle at the critical point of a Lennard-Jones fluid for a positive particle-atom scattering length. We investigate the influence of the range of the particle-atom interaction on trapping properties, and the pick-off decay rate for the case where the particle is ortho-positronium.Comment: 12 pages, 3 figures, revtex4 preprin

    Zero range potential for particles interacting via Coulomb potential: application to electron positron annihilation

    Full text link
    The zero range potential is constructed for a system of two particles interacting via the Coulomb potential. The singular part of the asymptote of the wave function at the origin which is caused by the common effect of the zero range potential singularity and of the Coulomb potential is explicitly calculated by using the Lippmann-Schwinger type integral equation. The singular pseudo potential is constructed from the requirement that it enforces the solution to the Coulomb Schr\"odinger equation to possess the calculated asymptotic behavior at the origin. This pseudo potential is then used for constructing a model of the imaginary absorbing potential which allows to treat the annihilation process in positron electron collisions on the basis of the non relativistic Schr\"odinger equation. The functional form of the pseudo potential constructed in this paper is analogous to the well known Fermi-Breit-Huang pseudo potential. The generalization of the optical theorem on the case of the imaginary absorbing potential in presence of the Coulomb force is given in terms of the partial wave series

    Hubble Space Telescope Images of Stephan's Quintet: Star Cluster Formation in a Compact Group Environment

    Get PDF
    Analysis of Hubble Space Telescope/Wide Field Planetary Camera 2 images of Stephan's Quintet, Hickson Compact Group 92, yielded 115 candidate star clusters (with V-I < 1.5). Unlike in merger remants, the cluster candidates in Stephan's Quintet are not clustered in the inner regions of the galaxies; they are spread over the debris and surrounding area. Specifically, these sources are located in the long sweeping tail and spiral arms of NGC 7319, in the tidal debris of NGC 7318B/A, and in the intragroup starburst region north of these galaxies. Analysis of the colors of the clusters indicates several distinct epochs of star formation that appear to trace the complex history of dynamical interactions in this compact group.Comment: 24 pages, 21 figures (13 PostScript and 8 JPEG), LaTeX (uses aastexug.sty), accepted for publication in the Astronomical Journal (July 2001). Full-resolution PostScript figures available at http://www.astro.psu.edu/users/gallsc/sq/figs.tar.g
    • …
    corecore