38 research outputs found

    Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost

    Get PDF
    Peat in the discontinuous permafrost zone contains a globally significant reservoir of carbon that has undergone multiple permafrost-thaw cycles since the end of the mid-Holocene (~3700 years before present). Periods of thaw increase C decomposition rates which leads to the release of CO2 and CH4 to the atmosphere creating potential climate feedback. To determine the magnitude and direction of such feedback, we measured CO2 and CH4 emissions and modeled C accumulation rates and radiative fluxes from measurements of two radioactive tracers with differing lifetimes to describe the C balance of the peatland over multiple permafrost-thaw cycles since the initiation of permafrost at the site. At thaw features, the balance between increased primary production and higher CH4 emission stimulated by warmer temperatures and wetter conditions favors C sequestration and enhanced peat accumulation. Flux measurements suggest that frozen plateaus may intermittently (order of years to decades) act as CO2 sources depending on temperature and net ecosystem respiration rates, but modeling results suggest that—despite brief periods of net C loss to the atmosphere at the initiation of thaw—integrated over millennia, these sites have acted as net C sinks via peat accumulation. In greenhouse gas terms, the transition from frozen permafrost to thawed wetland is accompanied by increasing CO2 uptake that is partially offset by increasing CH4 emissions. In the short-term (decadal time scale) the net effect of this transition is likely enhanced warming via increased radiative C emissions, while in the long-term (centuries) net C deposition provides a negative feedback to climate warming

    Scales of Seafloor Sediment Resuspension in the Northern Gulf of Mexico

    Get PDF
    Seafloor sediment resuspension events of different scales and magnitudes and the resulting deep (\u3e1,000 m) benthic nepheloid layers were investigated in the northern Gulf of Mexico during Fall 2012 to Summer 2013. Time-series data of size-specific in-situ settling speeds of marine snow in the benthic nepheloid layer (moored flux cameras), particle size distributions (profiling camera), currents (various current meters) and stacked time-series flux data (sediment traps) were combined to recognize resuspension events ranging from small-scale local, to small-scale far-field to hurricane-scale. One smallscale local resuspension event caused by inertial currents was identified based on local high current speeds (\u3e10 cm s–1) and trap data. Low POC content combined with high lithogenic silica flux at 30 m above bottom (mab) compared to the flux at 120 mab, suggested local resuspension reaching 30 mab, but not 120 mab. Another similar event was detected by the changes in particle size distribution and settling speeds of particles in the benthic nepheloid layer. Flux data indicated two other small-scale events, which occurred at some distance, rather than locally. Inertia-driven resuspension of material in shallower areas surrounding the traps presumably transported this material downslope leaving a resuspension signal at 120 mab, but not at 30 mab. The passage of hurricane Isaac left a larger scale resuspension event that lasted a few days and was recorded in both traps. Although hurricanes cause large-scale events readily observable in sediment trap samples, resuspension events small in temporal and spatial scale are not easily recognizable in trapped material as they tend to provide less material and become part of the background signal in the long-term averaged trap samples. We suggest that these small-scale resuspension events, mostly unnoticed in conventional time-series sampling, play an important role in the redistribution and ultimate fate of sediment distribution on the seafloor

    New discoveries at Woolsey Mound, MC118, northern Gulf of Mexico

    Get PDF
    Woolsey Mound, a 1km-diameter carbonate-gas hydrate complex in the northern Gulf of Mexico, is the site of the Gulf’s only seafloor monitoring station-observatory in its only research reserve, Mississippi Canyon 118. Active venting, outcropping hydrate, and a thriving chemosynthetic community recommend the site for study. Since 2005, the Gulf of Mexico Hydrates Research Consortium has been conducting multidisciplinary studies to 1. Characterize the site, 2. Establish a facility for real-time monitoring-observing of gas hydrates in a natural setting, 3. Study the effects of gas hydrates on seafloor stability, 4. Establish fluid migration routes and estimates of fluid-flux at the site, 5. Establish the interrelationships between the organisms at the vent site and the association-dissociation of hydrates. A variety of novel geological, geophysical, geochemical and biological studies has been designed and conducted, some in survey mode, others in monitoring mode. Geophysical studies involving merging multiple seismic data acquisition systems accompanied by the application of custom processing techniques verify communication of surface features with deep structures. Supporting geological data derive from innovative recovery techniques. Geochemical sensors, used experimentally in survey mode, including aboard an AUV, double as monitoring devices. A suite of pore-fluid sampling devices has returned data that capture change at the site in daily increments; using only noise as an energy source, hydrophones have returned daily fluctuations in physical properties. Ever-expanding capabilities of a custom-ROV have been determined by research needs. Processing of new as well as conventional data via unconventional means has resulted in the discovery of new features…..vents, faults, benthic fauna…..and modification of others including pockmarks, hydrate outcrops, vent activity, and water-column chemical plumes. Though real-time monitoring awaits communications and power link to land, periodic data-collection reveals a carbonate-hydrate mound, part of an immensely complex hydrocarbon system

    Evaluating Alternative Ebullition Models for Predicting Peatland Methane Emission and Its Pathways via Data–Model Fusion

    Get PDF
    Understanding the dynamics of peatland methane (CH4) emissions and quantifying sources of uncertainty in estimating peatland CH4 emissions are critical for mitigating climate change. The relative contributions of CH4 emission pathways through ebullition, plant-mediated transport, and diffusion, together with their different transport rates and vulnerability to oxidation, determine the quantity of CH4 to be oxidized before leaving the soil. Notwithstanding their importance, the relative contributions of the emission pathways are highly uncertain. In particular, the ebullition process is more uncertain and can lead to large uncertainties in modeled CH4 emissions. To improve model simulations of CH4 emission and its pathways, we evaluated two model structures: (1) the ebullition bubble growth volume threshold approach (EBG) and (2) the modified ebullition concentration threshold approach (ECT) using CH4 flux and concentration data collected in a peatland in northern Minnesota, USA. When model parameters were constrained using observed CH4 fluxes, the CH4 emissions simulated by the EBG approach (RMSE = 0.53) had a better agreement with observations than the ECT approach (RMSE = 0.61). Further, the EBG approach simulated a smaller contribution from ebullition but more frequent ebullition events than the ECT approach. The EBG approach yielded greatly improved simulations of pore water CH4 concentrations, especially in the deep soil layers, compared to the ECT approach. When constraining the EBG model with both CH4 flux and concentration data in model–data fusion, uncertainty of the modeled CH4 concentration profiles was reduced by 78 % to 86 % in comparison to constraints based on CH4 flux data alone. The improved model capability was attributed to the well-constrained parameters regulating the CH4 production and emission pathways. Our results suggest that the EBG modeling approach better characterizes CH4 emission and underlying mechanisms. Moreover, to achieve the best model results both CH4 flux and concentration data are required to constrain model parameterization

    Evaluating alternative ebullition models for predicting peatland methane emission and its pathways via data–model fusion

    Full text link
    Understanding the dynamics of peatland methane (CH4) emissions and quantifying sources of uncertainty in estimating peatland CH4 emissions are critical for mitigating climate change. The relative contributions of CH4 emission pathways through ebullition, plant-mediated transport, and diffusion, together with their different transport rates and vulnerability to oxidation, determine the quantity of CH4 to be oxidized before leaving the soil. Notwithstanding their importance, the relative contributions of the emission pathways are highly uncertain. In particular, the ebullition process is more uncertain and can lead to large uncertainties in modeled CH4 emissions. To improve model simulations of CH4 emission and its pathways, we evaluated two model structures: (1) the ebullition bubble growth volume threshold approach (EBG) and (2) the modified ebullition concentration threshold approach (ECT) using CH4 flux and concentration data collected in a peatland in northern Minnesota, USA. When model parameters were constrained using observed CH4 fluxes, the CH4 emissions simulated by the EBG approach (RMSE = 0.53) had a better agreement with observations than the ECT approach (RMSE = 0.61). Further, the EBG approach simulated a smaller contribution from ebullition but more frequent ebullition events than the ECT approach. The EBG approach yielded greatly improved simulations of pore water CH4 concentrations, especially in the deep soil layers, compared to the ECT approach. When constraining the EBG model with both CH4 flux and concentration data in model–data fusion, uncertainty of the modeled CH4 concentration profiles was reduced by 78 % to 86 % in comparison to constraints based on CH4 flux data alone. The improved model capability was attributed to the well-constrained parameters regulating the CH4 production and emission pathways. Our results suggest that the EBG modeling approach better characterizes CH4 emission and underlying mechanisms. Moreover, to achieve the best model results both CH4 flux and concentration data are required to constrain model parameterization

    Evaluating Alternative Ebullition Models for Predicting Peatland Methane Emission and Its Pathways via Data–Model Fusion

    Get PDF
    Understanding the dynamics of peatland methane (CH4) emissions and quantifying sources of uncertainty in estimating peatland CH4 emissions are critical for mitigating climate change. The relative contributions of CH4 emission pathways through ebullition, plant-mediated transport, and diffusion, together with their different transport rates and vulnerability to oxidation, determine the quantity of CH4 to be oxidized before leaving the soil. Notwithstanding their importance, the relative contributions of the emission pathways are highly uncertain. In particular, the ebullition process is more uncertain and can lead to large uncertainties in modeled CH4 emissions. To improve model simulations of CH4 emission and its pathways, we evaluated two model structures: (1) the ebullition bubble growth volume threshold approach (EBG) and (2) the modified ebullition concentration threshold approach (ECT) using CH4 flux and concentration data collected in a peatland in northern Minnesota, USA. When model parameters were constrained using observed CH4 fluxes, the CH4 emissions simulated by the EBG approach (RMSE = 0.53) had a better agreement with observations than the ECT approach (RMSE = 0.61). Further, the EBG approach simulated a smaller contribution from ebullition but more frequent ebullition events than the ECT approach. The EBG approach yielded greatly improved simulations of pore water CH4 concentrations, especially in the deep soil layers, compared to the ECT approach. When constraining the EBG model with both CH4 flux and concentration data in model–data fusion, uncertainty of the modeled CH4 concentration profiles was reduced by 78 % to 86 % in comparison to constraints based on CH4 flux data alone. The improved model capability was attributed to the well-constrained parameters regulating the CH4 production and emission pathways. Our results suggest that the EBG modeling approach better characterizes CH4 emission and underlying mechanisms. Moreover, to achieve the best model results both CH4 flux and concentration data are required to constrain model parameterization

    An Integrative Model for Soil Biogeochemistry and Methane Processes: I. Model Structure and Sensitivity Analysis

    Get PDF
    Environmental changes are anticipated to generate substantial impacts on carbon cycling in peatlands, affecting terrestrial-climate feedbacks. Understanding how peatland methane (CH4) fluxes respond to these changing environments is critical for predicting the magnitude of feedbacks from peatlands to global climate change. To improve predictions of CH4 fluxes in response to changes such as elevated atmospheric CO2 concentrations and warming, it is essential for Earth system models to include increased realism to simulate CH4 processes in a more mechanistic way. To address this need, we incorporated a new microbial-functional group-based CH4 module into the Energy Exascale Earth System land model (ELM) and tested it with multiple observational data sets at an ombrotrophic peatland bog in northern Minnesota. The model is able to simulate observed land surface CH4 fluxes and fundamental mechanisms contributing to these throughout the soil profile. The model reproduced the observed vertical distributions of dissolved organic carbon and acetate concentrations. The seasonality of acetoclastic and hydrogenotrophic methanogenesis—two key processes for CH4 production—and CH4 concentration along the soil profile were accurately simulated. Meanwhile, the model estimated that plant-mediated transport, diffusion, and ebullition contributed to ∼23.5%, 15.0%, and 61.5% of CH4 transport, respectively. A parameter sensitivity analysis showed that CH4 substrate and CH4 production were the most critical mechanisms regulating temporal patterns of surface CH4 fluxes both under ambient conditions and warming treatments. This knowledge will be used to improve Earth system model predictions of these high-carbon ecosystems from plot to regional scales

    Hydrogenation of Organic Matter as a Terminal Electron Sink Sustains High CO2:CH4 Production Ratios During Anaerobic Decomposition

    Get PDF
    Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has an oxidation state of +4, if CH4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO2:CH4 \u3e1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. This mechanism for CO2 generation without concomitant CH4 production has the potential to regulate the global warming potential of peatlands by elevating CO2:CH4 production ratios

    Isotopic composition (13C and 14C) of sedimentary organic carbon within sediments of the southern Gulf of Mexico, collected in 2015

    No full text
    These data report the isotopic composition (13C and 14C) of sedimentary organic carbon within suspended particulate organic carbon in the southern Gulf of Mexico, collected in the summer of 2015

    Gulf of Mexico Benthic and Planktic Foraminifera Carbon Isotopes, 2015

    No full text
    This dataset consists of benthic and planktic foraminiferal carbon isotope (C-13, C-14) measurements from sediment cores taken throughout the northern Gulf of Mexico with relation to the Deepwater Horizon. Stable isotope measurements were performed on Cibicidoides spp., Uvigerina spp. and Globigerinoides ruber (white)
    corecore