1,681 research outputs found

    Using M-integral for multi-cracked problems subjected to nonconservative and nonuniform crack surface tractions

    Get PDF
    AbstractIn this paper, an energy parameter based on the concept of the M-integral is proposed for describing the fracture behavior of a multi-cracked solid subjected to nonconservative and nonuniform crack surface tractions. By using the M-integral with a suitably chosen closed contour, one can evaluate the ‘surface creation energy’ (SCE) required for creation of the stressed cracks. Also, it is demonstrated that the property of path-independence holds even under the action of crack surface tractions. Therefore, the singular stress field in the near-tip areas is not directly involved in the calculation so that a complicated finite element model around the crack tips is not required in evaluation of the M-integral

    Perceived coach autonomy support and athlete burnout : the role of athletes’ experiential avoidance

    Get PDF
    Researchers have found that perceived coach autonomy support is negatively related to athlete burnout. However, whether offering such support would be helpful for all athletes or only athletes with certain characteristics is unknown. Following the notion of autonomous goal regulation suggested in self-determination theory, the authors propose that having autonomy support from coaches will be more strongly associated with a decrease in athlete burnout among athletes with lower experiential avoidance than among those with higher experiential avoidance. Experiential avoidance is a tendency to escape, avoid, or modify the frequency of uncomfortable experiences. A total of 141 collegiate student athletes completed surveys at two time points over three months. The results indicate that perceived coach autonomy support is negatively related to athlete burnout. Furthermore, the negative relationship between perceived coach autonomy support and decreased athlete burnout is stronger when experiential avoidance is low rather than high. When the three dimensions of burnout were analyzed individually (i.e., emotional and physical exhaustion, reduced sense of accomplishment and sport devaluation), only emotional and physical exhaustion and overall score were significant. The implications and applications of these results are discussed from an interactionist perspective

    The N-terminal signal sequence and the last 98 amino acids are not essential for the secretion of Bacillus sp TS-23 alpha-amylase in Escherichia coli

    Get PDF
    A truncated Bacillus sp. TS-23 alpha -amylase gene lacking 96 and 294 bp at its 5' and 3' end respectively was prepared by polymerase chain reaction and cloned into Escherichia coli expression vector, pQE-30, under the control of T5 promoter. SDS-PAGE and activity staining analyses showed that the His(6)-tagged amylase had a molecular mass of approximately 54 kDa. Isopropyl-beta -D-thiogalactopyranoside (IPTG) induction of E. coli M15 cells bearing the recombinant plasmid resulted in the extracellular production of active amylase. Western blot analysis also revealed that the truncated amylase was present in the periplasmic space and culture medium

    Comparison of s- and d-wave gap symmetry in nonequilibrium superconductivity

    Full text link
    Recent application of ultrafast pump/probe optical techniques to superconductors has renewed interest in nonequilibrium superconductivity and the predictions that would be available for novel superconductors, such as the high-Tc cuprates. We have reexamined two of the classical models which have been used in the past to interpret nonequilibrium experiments with some success: the mu* model of Owen and Scalapino and the T* model of Parker. Predictions depend on pairing symmetry. For instance, the gap suppression due to excess quasiparticle density n in the mu* model, varies as n^{3/2} in d-wave as opposed to n for s-wave. Finally, we consider these models in the context of S-I-N tunneling and optical excitation experiments. While we confirm that recent pump/probe experiments in YBCO, as presently interpreted, are in conflict with d-wave pairing, we refute the further claim that they agree with s-wave.Comment: 14 pages, 11 figure

    A Grand Canonical Ensemble Approach to the Thermodynamic Properties of the Nucleon in the Quark-Gluon Coupling Model

    Get PDF
    In this paper, we put forward a way to study the nucleon's thermodynamic properties such as its temperature, entropy and so on, without inputting any free parameters by human hand, even the nucleon's mass and radius. First we use the Lagrangian density of the quark gluon coupling fields to deduce the Dirac Equation of the quarks confined in the gluon fields. By boundary conditions we solve the wave functions and energy eigenvalues of the quarks, and thus get energy-momentum tensor, nucleon mass, and density of states. Then we utilize a hybrid grand canonical ensemble, to generate the temperature and chemical potentials of quarks, antiquarks of three flovars by the four conservation laws of the energy and the valence quark numbers, after which, all other thermodynamic properties are known. The only seemed free paremeter, the nucleon radius is finally determined by the grand potential minimal principle.Comment: 5 pages, LaTe

    Einstein energy associated with the Friedmann -Robertson -Walker metric

    Full text link
    Following Einstein's definition of Lagrangian density and gravitational field energy density (Einstein, A., Ann. Phys. Lpz., 49, 806 (1916); Einstein, A., Phys. Z., 19, 115 (1918); Pauli, W., {\it Theory of Relativity}, B.I. Publications, Mumbai, 1963, Trans. by G. Field), Tolman derived a general formula for the total matter plus gravitational field energy (P0P_0) of an arbitrary system (Tolman, R.C., Phys. Rev., 35(8), 875 (1930); Tolman, R.C., {\it Relativity, Thermodynamics & Cosmology}, Clarendon Press, Oxford, 1962)); Xulu, S.S., arXiv:hep-th/0308070 (2003)). For a static isolated system, in quasi-Cartesian coordinates, this formula leads to the well known result P0=∫−g(T00−T11−T22−T33) d3xP_0 = \int \sqrt{-g} (T_0^0 - T_1^1 -T_2^2 -T_3^3) ~d^3 x, where gg is the determinant of the metric tensor and TbaT^a_b is the energy momentum tensor of the {\em matter}. Though in the literature, this is known as "Tolman Mass", it must be realized that this is essentially "Einstein Mass" because the underlying pseudo-tensor here is due to Einstein. In fact, Landau -Lifshitz obtained the same expression for the "inertial mass" of a static isolated system without using any pseudo-tensor at all and which points to physical significance and correctness of Einstein Mass (Landau, L.D., and Lifshitz, E.M., {\it The Classical Theory of Fields}, Pergamon Press, Oxford, 2th ed., 1962)! For the first time we apply this general formula to find an expression for P0P_0 for the Friedmann- Robertson -Walker (FRW) metric by using the same quasi-Cartesian basis. As we analyze this new result, physically, a spatially flat model having no cosmological constant is suggested. Eventually, it is seen that conservation of P0P_0 is honoured only in the a static limit.Comment: By mistake a marginally different earlier version was loaded, now the journal version is uploade

    Identification of essential histidine residues in a recombinant alpha-amylase of thermophilic and alkaliphilic Bacillus sp strain TS-23

    Get PDF
    To understand the structure-function relationships of a truncated Bacillus sp. strain TS-23 alpha-amylase, each of His-137, His-191, His-239, His-269, His-305, His-323, His-361, His-436, and His-475 was replaced with leucine. The molecular masses of the purified wild-type and mutant enzymes were approximately 54 kDa. The specific activity of His323Leu and His436Leu was decreased by more than 52%, while His239Leu, His305Leu, and His475Leu showed activity similar to that of the wild-type enzyme. As compared with the wild-type enzyme, His323Leu and His436Leu exhibited a 62% decrease in the value of k(cat)/K-m. Alterations in His-191, His-239, His-305, and His-475 did not cause a significant change in the K-m or k(cat) values. At 70degreesC, a decreased half-life was observed in His436Leu. These results indicate that His-137, His-269, and His-361 of Bacillus sp. strain TS-23 alpha-amylase are important for proper catalytic activity and that His-436 may contribute to the thermostability of the enzyme

    Geometry-dependent scattering through quantum billiards: Experiment and theory

    Full text link
    We present experimental studies of the geometry-specific quantum scattering in microwave billiards of a given shape. We perform full quantum mechanical scattering calculations and find an excellent agreement with the experimental results. We also carry out the semiclassical calculations where the conductance is given as a sum of all classical trajectories between the leads, each of them carrying the quantum-mechanical phase. We unambiguously demonstrate that the characteristic frequencies of the oscillations in the transmission and reflection amplitudes are related to the length distribution of the classical trajectories between the leads, whereas the frequencies of the probabilities can be understood in terms of the length difference distribution in the pairs of classical trajectories. We also discuss the effect of non-classical "ghost" trajectories that include classically forbidden reflection off the lead mouths.Comment: 4 pages, 4 figure

    Quantum Computing of Quantum Chaos in the Kicked Rotator Model

    Get PDF
    We investigate a quantum algorithm which simulates efficiently the quantum kicked rotator model, a system which displays rich physical properties, and enables to study problems of quantum chaos, atomic physics and localization of electrons in solids. The effects of errors in gate operations are tested on this algorithm in numerical simulations with up to 20 qubits. In this way various physical quantities are investigated. Some of them, such as second moment of probability distribution and tunneling transitions through invariant curves are shown to be particularly sensitive to errors. However, investigations of the fidelity and Wigner and Husimi distributions show that these physical quantities are robust in presence of imperfections. This implies that the algorithm can simulate the dynamics of quantum chaos in presence of a moderate amount of noise.Comment: research at Quantware MIPS Center http://www.quantware.ups-tlse.fr, revtex 11 pages, 13 figs, 2 figs and discussion adde
    • 

    corecore