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In this paper, an energy parameter based on the concept of the M-integral is proposed for describing the
fracture behavior of a multi-cracked solid subjected to nonconservative and nonuniform crack surface
tractions. By using the M-integral with a suitably chosen closed contour, one can evaluate the ‘surface
creation energy’ (SCE) required for creation of the stressed cracks. Also, it is demonstrated that the prop-
erty of path-independence holds even under the action of crack surface tractions. Therefore, the singular
stress field in the near-tip areas is not directly involved in the calculation so that a complicated finite ele-
ment model around the crack tips is not required in evaluation of the M-integral.
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1. Introduction

For engineering structures containing multiple distributed
cracks, the local stress state in the near-tip region becomes quite
complicated and difficult to describe. In such a case, the use of
energy parameters in describing the ‘global’ fracture state of the
multi-cracked fracture state is therefore of practical interest. The
well-known energy conservation contour integrals derived from
Noether’s theorem in plane elasticity include the Jk-, M-, and L-inte-
grals (Knowles and Sternberg, 1972; Budiansky and Rice, 1973).
Among them, the Jk-integrals (k = 1,2) have widely been used as en-
ergy fracture parameters for single-cracked problems. Physically, Jk

evaluate the energy release rates related to crack extension in quasi-
brittle materials. Nevertheless, the Jk-integrals are not suitable for
use in characterizing the multi-cracked energy state due to their ‘lo-
cal’ nature associated with a single crack tip.

As to the M-integral, while not as commonly used as Jk, it has been
used in problems containing a single crack (e.g., Herrmann and Herr-
mann, 1981; Eischen and Herrmann, 1987; Seed, 1997). In these
applications, the integration contours were delimited in various
ways. Such flexibility implies its applicability to fracture analysis
for multi-cracked problems. In the last decade, the M-integral has
been used for problems containing multiple traction-free cracks
for linear elasticity (Chen, 2001; Chen and Lu, 2003, etc.) and
ll rights reserved.
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g).
hyperelastic materials (Chang and Lin, 2007). An important issue ad-
dressed in these works is that, for the condition when the cracks are
embedded in an infinite medium and subjected to a uniform far-field
loading system, the result of M is independent of the coordinate ori-
gin. In such a condition, by suitably choosing an integration contour,
the M-integral evaluates twice the surface creation energy (SCE)
associated with creation of all the cracks and can be used as an en-
ergy fracture parameter.

In engineering applications, nonconservative and nonuniform
tractions along the crack surfaces – which may be due to pressur-
ized fluids, contact pressure, and interfacial friction – are of special
interest. In this case, formulation of the energy conservation con-
tour integrals needs to be modified. Discussion on this issue for
problems concerning a single crack tip has been presented (Chang
and Wu, 2001). Nevertheless, more investigations on multi-cracked
problems are still in need.

The objective of this paper is to evaluate the SCE associated with
creation of multiple cracks in 2D elastic solids. In addition to the
external loading system, the study is considered especially for prob-
lems subjected to nonconservative and nonuniform crack surface
tractions. An energy parameter based on the concept of the M-inte-
gral is proposed for this purpose. The integral is shown to be path-
independent, even under the action of crack surface tractions. As a
consequence, accurate solution can be easily obtained by direct use
of numerical schemes such as finite element method. This energy
parameter can be used to quantitatively characterize the effect of
the crack surface tractions on the mechanical strength of the mul-
ti-cracked solids.
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Fig. 1. A 2-D infinite elastic solid, containing a single crack, is subjected to a far-
field uniform loading system and nonuniform traction Tc on the crack surfaces.

Fig. 2. An infinite elastic solid, containing N distributed cracks (N = 4 in this figure),
is subjected to a far-field uniform load system and nonuniform tractions on the
crack surfaces.
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2. The M-integral

2.1. A single crack

Consider a 2-D infinite elastic solid, containing a single crack of
length l and with two tips P and Q (Fig. 1). A coordinate system
originating at an arbitrarily chosen point O is introduced and, with
no loss of generality, the crack parallel to the x1-direction. The po-
sition vector at the crack center is denoted as a. Under the action of
a far-field uniform loading system r11 ;r12 ; s1

� �
, the body is homo-

geneously stressed except in the local neighborhood of the cracked
area. In addition, the crack is subjected to nonuniform traction vec-
tor Tc on its surfaces. When the body force is neglected, the M-inte-
gral for this crack with respect to O is defined as

M ¼
Z

D
Wnixi � Tj

@uj

@xi

� �
xi

� �
ds ð1Þ

where D is a counterclockwise closed contour around the whole
crack and consists of four parts C1 + C1 + C2 + C2, W is the strain en-
ergy density of the material, T is the traction vector, n is the out-
ward unit vector normal to D, s is the arc length, x is the position
vector of the integration point, and u is the displacement vector.
By definition, the integration is carried out by taking the limiting
case where C1 and C2 are shrunk onto the crack tips P and Q,
respectively, and C1 and C2 are lying along the crack surfaces (this
limiting case is not shown in Fig. 1).

It can be shown that M is related to the Jk-integrals as

M ¼ a1 ðJP
1 � JQ

1 Þ �
Z

C1þC2

ðTcÞj
@uj

@x1
dn

� �

þ a2 JP
2 � JQ

2

� 	
þ
Z

C1þC2

Wn2 � ðTcÞj
@uj

@x2

� �
dn


 �

þ l
2

JP
1 þ JQ

1

� 	
�
Z

C1þC2

nðTcÞj
@uj

@n
dn ð2Þ

where JP
k and JQ

k are the Jk-integrals evaluated along C1 and C2,
respectively, with JP

k being defined as

JP
k ¼ lim

C�1!0

Z
C1

Wnk � Tj
@uj

@xk

� �� �
ds k ¼ 1;2 ð3Þ

Also, n is the local coordinate system originated at the crack center
and lying along the crack. Again, by definition, the Jk integrals are
evaluated by taking the limiting case in which C1 and C2 are shrunk
towards P and Q. Further, it can easily be shown that, while the va-
lue of Jk-integrals depends on the orientation of the coordinate sys-
tem, the quantities in Eq. (2) are independent of the orientation of
the coordinate system. Such a characteristic implies that M remains
unchanged when the integral is evaluated with respect to an arbi-
trarily oriented system, e.g., x01 � x02 depicted in Fig. 1.

2.2. Multiple cracks

The 2-D infinite elastic solid containing N distributed cracks,
each of length lr (r = 1, . . . ,N) and with random location and orien-
tation, as shown in Fig. 2, is homogeneously stressed under a far-
field uniform loading system r11 ;r12 ; s1

� �
. In addition, the nonuni-

form traction vector (Tc)r is applied on the surfaces of the rth crack.
A coordinate system originating at an arbitrarily chosen point O is
introduced. When the body force is neglected, the M-integral for all
the cracks with respect to O can be defined as

M �
XN

r¼1

Z
Dr

Wnixi � Tj
@uj

@xi

� �
xi

� �
ds ð4Þ

where Dr is the counterclockwise closed contour associated with
the rth crack. Again, by definition, the integration is performed by
taking the limiting case in which the portions of Dr are shrunk onto
the crack tips and lying along the crack surfaces. Also, while the va-
lue of M varies with respect to different selections of origin O, the
result of M appears to be invariant with respect to the orientation
of the coordinate system.

3. Path-independence

While the property of path-independence for the M-integral has
been established for problems containing multiple traction-free
cracks (e.g., Chen, 2001). the validity of this property still needs
to be investigated when the cracks are subjected to surface
tractions.

To this end, we first take an outer contour Do (Fig. 2) that can be
arbitrarily chosen (except for the requirements to be inside the
body, enclose all the N cracks, and contain no other singularity in
it). Then, by introducing the pairs of cut paths Lþr and L�r
(r = 1, . . . ,N), which coincides with each other asymptotically, and
delimiting the closed contour C ¼ ðDr þ Lþr þ L�r Þ � Do, we can thus
rewrite Eq. (4) as
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M ¼
Z

C
Wnixi � Tj

@uj

@xi

� �
xi

� �
dsþ

Z
Do

Wnixi � Tj
@uj

@xi

� �
xi

� �
ds ð5Þ

Further, we consider the region A enclosed by C, where A is simply-
connected due to introduction of the cut paths Lþr and L�r . By apply-
ing divergence theorem in A, we can rewrite the first integration on
the right hand side of Eq. (5) asZ

A

@W
@xi
� rjm

@uj;m

@xi

� �
xi þ Wdii � rjm

@uj

@xm

� �
� @rjm

@xm

@uj

@xi
xi

� �
da ð6Þ

where r is the stress tensor, d is the Kronecker delta tensor, and da
is the infinitesimal integration area. Note that the first integrand of
Eq. (6) vanishes when the material enclosed in A is homogeneous in
both the x1- and x2-directions. Also, by taking the constitutive rela-
tion and the state of equilibrium (with no body force, i.e., rjm,m = 0),
we observe that both the second and third integrands of Eq. (6)
vanish.

From Eqs. (5) and (6), the M-integral then reduces to

M ¼
Z

Do

Wnixi � Tj
@uj

@xi

� �
xi

� �
ds ð7Þ

Eq. (7) indicates that the M-integral is path-independent, i.e., the
integral can be carried out along any outer contour Do, with the re-
sult remaining unchanged. With this property, the integration con-
tour can be more easily defined with no need to accommodate the
complex geometry of the set of cracks.

4. Origin-independence

Since the position vector x is included in the M-integral, the re-
sult of this integration thus in general varies with the selection of
origin O. In this section, this property will be investigated for the
set of N cracks in an infinite body under the action of
r11 ;r12 ; s1
� �

and (Tc)r (r = 1, . . . ,N, as shown in Fig. 2).
By substituting Eqs. (1) and (2) into Eq. (4), the M-integral for

the N cracks with respect to O can be expressed as

M ¼
XN

r¼1

ar
1 JPr

1 � JQr
1

� 	
�
Z

Cr
1þCr

2

ðTcÞrj
@uj

@x1
dnr

" #(

þ ar
2 ðJ

Pr
2 � JQr

2 Þ þ
Z

Cr
1þCr

2

Wnr
2 � ðTcÞrj

@uj

@x2

� �
dnr

( )

þ lr
2

JPr
1 JQr

1

� 	
�
Z

C1þC2

nrðTcÞrj
@uj

@nr dnr
�

ð8Þ
Fig. 3. A remote rectangular contour D1 is chosen for this integration.
where ar is the position vector of the rth crack center with respect
to O (as shown in Fig. 3), JPr

k and JQr
k are the Jk-integrals associated

with the tips Pr and Qr, respectively, Cr
1 and Cr

2 are the line segments
along the rth crack surfaces, nr is the local coordinate system origi-
nated at the rth crack center, and nr

2 is the outward unit vector nor-
mal to Cr

1 þ Cr
2.

Due to path-independence, the integration can be carried out
along any arbitrarily chosen closed contour Do that encloses all
the N cracks, with the value remaining unchanged. Here, a remote
rectangular contour D1ð¼ D11 þ D12 þ D13 þ D14 Þ is chosen. Also, by
taking another arbitrarily chosen point O0 as the reference point,
we can rewrite Eq. (8) as

M ¼
XN

r¼1

ar
1 � b1

� �
JPr

1 � JQr
1

� 	
�
Z

Cr
1þCr

2

ðTcÞrj
@uj

@x1
dnr

" #(

þ ar
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� �
JPr

2 � JQr
2

� 	
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Z
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1þCr

2
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@x2

� �
dnr

" #)

þ
XN

r¼1
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2

JPr
1 JQr

1

� 	
�
Z

C1þC2

nrðTcÞrj
@uj

@nr dnr

" #

þ bk

Z
D1

Wnk � Tj
@uj

@xk

� �� �
ds ð9Þ

where b is the position vector of O0. Note that, since D1 is chosen to
be far from the cracked region, the stresses and the strain energy
density W are thus homogeneous along the contour. Also, the spa-
tial derivatives of the far-field displacements are also uniform.
Therefore, the last term of Eq. (9) (i.e., the integration along D1)
intrinsically vanishes for both k = 1 and 2 in that all the state vari-
ables are homogeneously distributed. This indicates that the M-
integral in Eq. (9), which is originally defined with respect to the
origin O, appears to be equivalent to that evaluated with respect
to another point O0. This means that the location-dependent terms
in both equations are equal to each other and actually vanish since
O0 can be arbitrarily chosen. Thus, both equations reduce to the fol-
lowing origin-independent expression as

M ¼
XN

r¼1

lr
2

JPr
1 þ JQr

1

� 	
�
Z

C1þC2

nrðTcÞrj
@uj

@nr dnr
� �

ð10Þ

Eq. (10) indicates that, for a homogeneously-stressed infinite solid
under the action of nonuniform crack surface tractions, the M-inte-
gral is origin-independent.

As an aside, it is noted that the last term of Eq. (9) actually cor-
responds to the integration of Jk. Due to path-independence, the
integration can be carried out along D1 or any arbitrarily chosen
closed contour that encloses all the N cracks, The vanishing feature
indicates that the Jk-integrals are not suitable for use in character-
izing the multi-cracked energy state.
Fig. 4. An intermediate state for the crack during its evolution. The crack is
subjected to nonconservative and nonuniform surface tractions.



Fig. 5. A plane strain specimen containing two perpendicular cracks.

Fig. 6. Three instances of different distributed crack surface tractions.
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5. Physical interpretation

In this section, the physical meaning of the M-integral is to be
illustrated. By considering a single crack with two tips P and Q
and of length l, we arbitrarily choose an intermediate state during
the process of its self-expansion, as shown in Fig. 4. At this stage,
the crack is of length 2a and instantly terminated at, say, point Pe

and point Qe. Note that, the surface traction Tc is not present until
the crack surfaces are created due to its nonconservative nature. In
Fig. 4, the portion of the crack that remains to be formed and the
corresponding to-be-present surface tractions are depicted in
dashed lines. The associated energy release rate G, due to a unit ad-
vance at the point Pe along the original direction of the crack seg-
ment, can be expressed as decrease of the potential energy P and
related to the coordinate component n as

G ¼ �dP
da
¼ �dP

dn
dn
da

ð11Þ

and

n ¼ a for n P 0; and n ¼ �a for n < 0 ð12Þ

The potential energy P consists of the strain energy and the work
done by the far-field loading system. The value of G, as a function
of a, is equal to JP

1 and �JQ
1 at tip P and Q, respectively as

Gjn¼l=2 ¼ �
dP
da

����
n¼l=2

¼ JP
1 ð13:1Þ

Gjn¼�l=2 ¼ �
dP
da

����
n¼�l=2

¼ �JQ
1 ð13:2Þ

For an infinite medium subjected to a far-field uniform loading sys-
tem r1, it is observed that G appears to be directly proportional to
the (half-) crack length a (e.g., Rivlin and Thomas, 1983; Broek,
1986, etc.). Such linearity also holds under the action of crack sur-
face tractions, as illustrated in Appendix A. In this sense, G can be
written in terms of the following separable form

G ¼ Ua ð14Þ

where U is a function of the loading conditions and the material
parameters.

With the far-field uniform loads remaining unchanged, integra-
tion of Eq. (14) throughout the process of crack evolution (by con-
sidering Eqs. (13.1) and (13.2)) yields

DP ¼ �
Z n¼l=2

n¼�l=2
Gda ¼ �1

2
Ua2

����
n¼l=2

n¼�l=2
¼ �1

2
l
2

JP
1 þ JQ

1

� 	� �
ð15Þ

By substituting Eq. (15) into Eq. (10) (with N = 1), we then have

M ¼ �2ðDPþ DWnoncÞ ¼ �2SCE ð16Þ

where DWnonc is the work done by the nonconservative crack sur-
face tractions and defined as

DWnonc ¼ 1
2

Z
C1þC2

nðTcÞj
@uj

@n
dn ð17Þ

Eq. (16) indicates that the M-integral evaluates twice the SCE (i.e.,
the sum of the potential energy and nonconservative work)
required for creation of the stressed crack. Also, the physical inter-
pretation of the M-integral can be straightforwardly extended to
multi-cracked condition in that, as shown by Eq. (4), the result of
M can be taken as the summation of those evaluated by each single
crack.
6. Numerical examples

6.1. Problem 1 (verification)

The aim of this problem is to verify the feasibility of our formu-
lation. To this end, we consider a plane strain isotropic elastic spec-
imen containing two perpendicular cracks of length l and 0.75l,
separated by a distance 0.25l from each other, as shown in Fig. 5



Table 1
The results of M from two FE models for problem 1 (Pa m2).

Mesh 1 (Fig 7(1)) Mesh 2 (Fig 7(2))

2.936 2.954

Note: w = 150 cm, B = 150 cm, l = 12 cm, r1 = 40 kPa, b = 30�, p = 100 kPa, a = (15,5)
cm, load case 1.
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(E = 30 MPa and m = 0.25). The crack length l is relatively small
compared with the width w and length B so that the finite width
effect of the specimen can be neglected. The specimen is subjected
to an oblique uniaxial tensile stress r1 along the exterior bound-
aries. Three instances of different distributed crack surface trac-
tions, as shown in Fig. 6, are considered.

The study in this example problem is organized as follows. First,
the effect of the local finite element modeling around the crack tips
is investigated. Next, the property of path-independence is demon-
strated. Subsequently, the origin-independent property of M is
examined. Finally, the physical interpretation of M is verified by
comparing the result of the integral with the energy change asso-
ciated with both perturbation of the crack length and creation of
the cracks.

For accuracy, it is required that the M-integral be computed
with a high degree of precision. To investigate the effect of finite
element modeling around the crack tips, two finite element models
Fig. 7. The local portions in the near-tip area for the two FE meshes.
with very different near-tip local meshes are used to simulate the
specimen. In the calculations, quadratic finite elements are used
for interpolation of the displacement field. The local portions in
the near-tip area for the two FE meshes are shown in Fig. 7. Note
that the concept of multi-point constraint is used to tie the fine
and coarse elements in the second mesh (Fig. 7(2)) so that continu-
ity of displacement is ensured. Also, no particular singular ele-
ments are used. The integration paths are chosen to be far from
the crack tips. The results of M, for load case 1, from the two
meshes are tabulated in Table 1. Although the mesh around the
crack tips in the second model is quite coarse, the results from
the two models show very good consistency, with deviation less
than 1%. As indicated, the above calculation appears to be rather
insensitive to the local mesh in that the near-tip finite element
solutions are not directly used when the integration paths are cho-
sen to be far from the crack tips.

Three integration paths (as shown in Fig. 8), each enclosing dif-
ferent portion of the same finite element mesh, are used in order to
verify path-independence of the calculation. The results with re-
spect to a = (15,15) cm are shown in Table 2. The results obtained
from the three contours show very good agreement and the prop-
erty of path-independence is evident.

In order to show the property of origin-independence, three
coordinate systems located at different origins are selected. The
values of M with respect to the three choices of a are shown
in Table 3. The numerical results indicate that, even when the
origin is chosen to be far away from the cracks, deviations of
M are observed to be under 1%. The validity of this property is
thus verified.

To illustrate the physical meaning of the M-integral, we first
consider the same specimen and define another problem with
slightly altered crack configuration, where one of the crack tips is
extended by a relatively small amount of dl (Fig. 5). Numerically,
this is established by perturbing nodal point positions at the crack
path 1

path 2

path 3

Fig. 8. Three contours are used for the M-integral.



Table 2
The results of M from three integration paths for problem 1 (Pa m2).

Path 1 Path 2 Path 3

Case 1 (Fig 6(1)) 2.941 2.914 2.936
Case 2 (Fig 6(2)) 1.859 1.868 1.855
Case 3 (Fig 6(3)) 1.568 1.560 1.553

Note: w = 150 cm, B = 150 cm, l = 12 cm, r1 = 40 kPa, b = 30�, p = s = 100 kPa,
a = (15,15) cm.

Table 3
The results of M versus different a’s for problem 1 (Pa m2).

a (15,15) cm (0,0) cm (100,0) cm

Case 1 (Fig 6(1)) 2.936 2.935 2.931
Case 2 (Fig 6(2)) 1.859 1.854 1.851
Case 3 (Fig 6(3)) 1.568 1.552 1.555

Note: w = 150 cm, B = 150 cm, l = 12 cm, r1 = 40 kPa, b = 30�, p = s = 100 kPa.

Table 5
Energy change due to creation of the cracks in problem 1 (Pa m2).

�DP DWnonc �(DP + DWnonc) M/2

7.988 6.534 1.454 1.468

Note: w = 150 cm, B = 150 cm, l = 12 cm, r1 = 40 kPa, b = 30�, p = 100 kPa, load case
1.

Table 6
The results of Jk for problem 1 (Pa m2).

J1 J2

Case 1 (Fig 6(1)) 3.500 � 10�4 �3.128 � 10�4

Case 2 (Fig 6(2)) 2.427 � 10�4 �1.852 � 10�4

Case 3 (Fig 6(3)) 1.953 � 10�4 �0.741 � 10�4

Note: w = 150 cm, B = 150 cm, l = 12 cm, r1 = 40 kPa, b = 30�, p = s = 100 kPa.

Fig. 9. A plane stress specimen containing a family of parallel pressurized cracks.
The pressure p(x2) varies linearly from po to 3po along the x2-direction (problem 2).
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tip of a given finite element mesh ahead by dl. The mechanical en-
ergy, which consists of the potential energy P and the nonconser-
vative work Wnonc, for both the original and the perturbed
configurations are then calculated by using finite elements. By
evaluating the corresponding energy differences, the values of
�d(DP + DWnonc) associated with two selected values of dl, (for
load case 1) are listed in Table 4. Also listed in the table are the val-
ues of dM, i.e., the variation of M due to the crack growth of dl.
Next, we consider the same specimen and take its uncracked state
as a reference configuration. Still, the values of the mechanical en-
ergy associated with both the cracked and uncracked configura-
tions are calculated by using finite elements. The result of
�(DP + DWnonc), which corresponds to the SCE due to creation
of the cracks, is listed in Table 5. Also listed in the table is the FE
result of the corresponding M-integral. By comparing the values
of both pairs, i.e., �d(DP + DWnonc) and dM/2, �(DP + DWnonc)
and M/2, the validity of the physical meaning of M as associated
with twice the SCE is thus well demonstrated.

As an aside, it was previously described that the Jk-integrals are
not suitable for use in characterizing the multi-cracked energy
state due to their vanishing feature. To illustrate this, the first inte-
gration path in Fig. 8 is used to evaluate Jk. and the results for the
three loading cases are shown in Table 6. By comparing with the
values of the M-integral, it is observed that the results of Jk appear
to be vanishingly small, as anticipated.
6.2. Problem 2 (application)

In this example, we consider a plane stress isotropic specimen
of width w and length B(E = 3 kPa and m = 0.25). The specimen con-
tains a family of parallel one-sized and pressurized cracks, as
shown in Fig. 9. These cracks, each of length l and subjected to non-
uniform pressure p(x2), are distributed in a doubly periodic man-
ner, where s and d denote the spacings of neighboring cracks in
Table 4
Energy released due to perturbed crack length in problem 1 (10�3 Pa m2).

dl/l �d(DP) d(DWnonc) �d(DP + DWnonc) dM/2

0.01/12 7.906 5.845 2.061 2.108
0.02/12 15.818 11.694 4.124 4.218

Note: w = 150 cm, B = 150 cm, l = 12 cm, r1 = 40 kPa, b = 30�, p = 100 kPa, load case
1.

Fig. 10. A cutoff area X, which is the specimen in Fig. 9, and an integration path Do

in an extended region (problem 2).



Fig. 12. The pressurized index versus the loading ratio po/r1 (problem 2). (Note:
w = 150 cm, B = 150 cm, d = 0.25 cm, r1 = 10 kPa.)
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the parallel (x1-) and perpendicular (x2-) directions. The magnitude
of p(x2) varies linearly from po to 3po along the x2-direction.

We further delimit the specimen as a cutoff area X in an ex-
tended region that is large enough to be regarded as an infinite
medium, as shown in Fig. 10. By using an integration path Do that
is far from the crack tips, the M-integral is evaluated with finite
elements. Note that it is not necessary to have very fine finite ele-
ment grids in the near-tip areas in that they are not directly used in
evaluating the integral. The crack density can be measured by the
crack density parameter f as

f ¼ Nl2

4AX
ð18Þ

where N is the total number of cracks, and AX is the area of X. Note
that the concept of cutoff area is commonly used in the context of
micromechanics (e.g., Ju and Chen, 1994; Tsukrov and Novak,
2004, etc). In the following calculations, the area AX and the spacing
d are fixed, while the crack length l and the spacing s are varying.
With this, five different values of crack density parameter are con-
sidered, i.e., f equal to 0.15, 0.24, 0.34, 0.47, and 0.61, respectively.

By applying uniaxial far-field tensile stress r1 in the x2-direc-
tion along the upper and lower boundaries of the extended region
(Fig. 10), the M-integral corresponding to various levels of applied
pressure p(x2) is then evaluated. Although not shown in detail here,
the results appear to be independent of both the integration path
and the origin. The results of M, associated with the five values
of f, are depicted versus the loading ratio po/r1 and shown in
Fig. 11. As can be seen from the figure, the value of M at a fixed
crack density appears to be nearly proportional to the level of
the applied pressure po. More discussions on such a feature are pre-
sented in Appendix B. Also, the results indicate that M is a mono-
tonically increasing function of the crack density.

The above results indicate that the M-integral essentially char-
acterizes the effect due to different crack density and pressurized
conditions. Application of M would then facilitate understanding
of the degradation of materials induced by the crack surface trac-
tion and furnish the associated information needed to describe
the damage state. Therefore, by using the results of M, the influ-
ence due to p(x2) can be effectively quantified. A ‘pressurized in-
dex’ (PI), for example, can be defined for this purpose. To this
end, by considering a fixed f and taking the unpressurized state
as a reference, the value of M at this reference state is denoted as
Mref,f. The result of M under the action of p(x2) is then normalized
with respect to Mref,f, and the pressurized index can be defined as

PI ¼ M
Mref;f

� 1 ð19Þ

Physically, PI measures the increment of normalized SCE induced by
p(x2) from its unpressurized reference state.
Fig. 11. The values of M versus the loading ratio po/r1 (problem 2). (Note:
w = 150 cm, B = 150 cm, d = 0.25 cm, r1 = 10 kPa).
The results of PI versus the loading ratio po/r1, under five dif-
ferent values of f. are shown in Fig. 12. As can be seen from the fig-
ure, the values of PI appear to vary proportionally with po/r1 at a
fixed f. The increase in po/r1 from 0 to 1 raises the value of PI from
0 to, approximately, 2. It is also observed that the five curves bear
almost indistinguishable trend, i.e., there is almost no variation of
PI with f. The results indicate that, at a fixed crack density, the SCE
corresponding to creation of the crack system increases by twice as
the value of po/r1 increases up 1. Such an effect appears to be very
similar for different values of f for the problem considered in this
example.

We further take the applied far-field stresses, along with the
corresponding averaged strain components of the specimen, and
define their ratios as the ‘stiffness index’ tensor SI for the speci-
men. For example, for the far-field stress r1 in Fig. 10, the compo-
nent SI22 for X is defined as

SI22 ¼
r1R B

0

R w

0
e22ðx1 ;x2Þdx1 dx2

Bw

" # ð20Þ

where e22(x1,x2) is the normal strain component in the x2-direction.
For pressurized cracks under fixed value of r1, e22(x1,x2) in X ap-
pears to increase as the pressurized level increases. Such ‘softening’
behavior induced by presence of the ‘internal’ pressure can thus be
properly characterized by the decrease of SI22. In addition to directly
evaluate the SCE, the result of M can also be used to evaluate the
change of SI under the action of the nonuniform pressure p(x2).
To this end, we have the correspondence relation between SI of X
and the SCE associated with creation of these cracks expressed
(Shen and Li, 2004) as

r1 : ½ðSI�HÞ�1 : Hþ S��1 : H�1 : r1 ¼ �2SCE=AX ð21Þ

where H is the elastic stiffness tensor of the matrix material, S is the
Eshelby tensor. By substituting the above solutions of M into Eqs.
(16) and (21), SI can then be evaluated.

The feasibility of using M-integral for evaluating SI can be dem-
onstrated by considering the special condition when the cracks are
unpressurized (i.e., po/r1 = 0). In such a case, SI is equal to the
effective stiffness that is commonly used in micromechanics for
describing the decrease of material integrity due to evolution of
cracks. The results of the normalized SI22, which is equal to the nor-
malized effective Young’s modulus E22/E, versus the crack density
parameter are shown in Fig. 13. Also included in the figure are
the solutions from other two approaches (Nemat-Nasser et al.,
1993; Shen and Li, 2004). As can be seen, our results by using M
are in good agreement with those from these two methods. Also,
when compared with other existing methods, our presented for-
mulation appears to be more straightforward in practice since
the effective stiffness is determined by using a scalar parameter



Fig. 13. The normalized effective elastic moduli E22/E (=SI22/E) for X versus the
crack density parameter (problem 2, po/r1 = 0).

Fig. 14. The normalized SI22/E for X versus the loading ratio po/r1 (problem 2).
(Note: w = 150 cm, B = 150 cm, d = 0.25 cm, r1 = 10 kPa.)

Fig. A.1. The results of G vs l under three loading conditions on the crack surfaces.
(Note: lo = 3 cm, r = 100 kPa.)
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(i.e., M) rather than the conventionally-used algebraic matrix
systems.

The influence due to the pressurized level on the normalized
stiffness index is illustrated in Fig. 14, where the results of SI22/E
for the five values of f, are depicted versus the loading ratio po/
r1. Again, all the curves bear very similar trend with respect to
po/r1. Also, it is seen that the value of SI22 drops and even vanishes
as the value of f and po/r1 increases. This indicates that, for certain
values of f and po/r1, the averaged value of the tensile strain
e22(x1,x2) in X becomes so large that SI22/E may even reaches zero.

The concept of SI can be used as an efficient tool in practical
applications. For example, for an underground damaged structure,
the crack surfaces are subjected to groundwater pressure whose
magnitude may change spatially due to variations in depth,
groundwater level, and drainage condition, etc. A numerical analy-
sis by using, say, finite elements is hereby conducted for evaluation
of the deformed state caused by the crack surface pressures and
other applied loads. Nevertheless, in order to explicitly apply the
crack surface pressure as a specified boundary condition, each indi-
vidual crack needs to be properly modeled in the finite element
model. This is not applicable in practice especially for the condition
when there can be more than hundreds and thousands of cracks in
the structure. Alternatively, with the concept of SI, the influence
from the magnitude of pressure level can be treated implicitly in
the same manner as that used for treatment of the distributed mul-
tiple cracks in micromechanics. In this sense, both the crack den-
sity parameter f and the normalized pressure level p/pref (where
pref is an arbitrarily chosen reference pressure level) are regarded
as mechanical factors that affect the stiffness of the corresponding
material and/or structure and can then be easily implemented for
subsequent analyzes. Based on this consideration, the damage phe-
nomena which covers combinations of f and p/pref for structures
containing multiple pressurized cracks can thus be effectively sim-
ulated, accurately quantified, and straightforwardly built in for fur-
ther computation.
7. Conclusion

The M-integral is generally origin-dependent. Nevertheless, for
an infinite medium containing multiple traction-free cracks under
a uniform far-field loading system, it has been well acknowledged
that the value of M-integral is independent of the coordinate origin,
In this paper, it is further illustrated that the origin-independent
property holds when the cracks are subjected to nonuniformly dis-
tributed surface tractions.

Physically, the M-integral evaluates (twice) the SCE correspond-
ing to creation of the stressed cracks. Also, due to path-indepen-
dence, the integration contour can be arbitrarily chosen as long
as they contain the whole set of cracks. Hence, the complicated sin-
gular stress field in the near-tip areas is not directly involved in the
calculation. Based on this characteristic, it is therefore suggested
that M be practically used as an energy parameter for describing
the decrease of material integrity of the multi-cracked solids under
the action of nonconservative and nonuniform crack surface
tractions.
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Appendix A

In order to investigate the effect of the crack length under the ac-
tion of crack surface tractions, we consider a single crack subjected
to a far-field uniform loading system, e.g., r11 ;r12 ; s1

� �
¼ ð0;4r;rÞ

and different nonuniform pressures on the crack surfaces. The val-
ues of G at tip P with respect to varying crack length, under three
loading conditions in plane strain, are evaluated by calculating the
associated J1-integral with finite elements here. The results are
sketched in Fig. A.1. The validity of this linear relation between G
and l is thus evident.
Appendix B

We consider a single crack subjected to uniaxial far-field tensile
stress r1 in the x2-direction and uniform pressure po on the crack
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surfaces. For plane stress, the result of DP due to creation of the
pressurized crack (Eq. (15)) can analytically be expressed as

DP ¼ �1
2

l
2

JP
1 þ JQ

1

� 	� �
¼ � 1

4E
� pðpo þ r1Þ2l2 ðA:1Þ

As an aside, by combined use of analytical asymptotic approach (in
the near-tip region) and finite element method (in the nonsingular
area), the integration for DWnonc in Eq. (17) can be evaluated and
written as

DWnonc ¼ 1
2

Z
C1þC2

nðTcÞj
@uj

@n
dn ¼ 0:787

1
E

p2
o þ r1po

� �
l2 ðA:2Þ

Then, substituting Eq. (A.1) and (A.2) into Eq. (16) results in

M ¼ 1
2E

pðr1Þ2 �0:002
po

r1
� 	2

þ 0:998
po

r1
� 	

þ 1
� �

l2 ðA:3Þ

As illustrated in Eqs. (A.1)–(A.3), while DP and DWnonc are
both characterized by quadratic function of po, this leading qua-
dratic term for M is almost eliminated and makes rather insignifi-
cant contribution when their summation is taken. The value of M is
thus governed by the linear term of po. Such a feature appears to be
more significant when po/r1 < 1.
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