71,088 research outputs found

    Spin relaxation in diluted magnetic semiconductor quantum dots

    Full text link
    Electron spin relaxation induced by phonon-mediated s-d exchange interaction in a II-VI diluted magnetic semiconductor quantum dot is investigated theoretically. The electron-acoustic phonon interaction due to piezoelectric coupling and deformation potential is included. The resulting spin lifetime is typically on the order of microseconds. The effectiveness of the phonon-mediated spin-flip mechanism increases with increasing Mn concentration, electron spin splitting, vertical confining strength and lateral diameter, while it shows non-monotonic dependence on the magnetic field and temperature. An interesting finding is that the spin relaxation in a small quantum dot is suppressed for strong magnetic field and low Mn concentration at low temperature.Comment: 11 pages, 11 figures, to be published in Phys. Rev.

    A Two-Step Etching Method to Fabricate Nanopores in Silicon

    Get PDF
    A cost effectively method to fabricate nanopores in silicon by only using the conventional wet-etching technique is developed in this research. The main concept of the proposed method is a two-step etching process, including a premier double-sided wet etching and a succeeding track-etching. A special fixture is designed to hold the pre-etched silicon wafer inside it such that the track-etching can be effectively carried out. An electrochemical system is employed to detect and record the ion diffusion current once the pre-etched cavities are etched into a through nanopore. Experimental results indicate that the proposed method can cost effectively fabricate nanopores in silicon.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Non-Markovian master equation for a damped oscillator with time-varying parameters

    Full text link
    We derive an exact non-Markovian master equation that generalizes the previous work [Hu, Paz and Zhang, Phys. Rev. D {\bf 45}, 2843 (1992)] to damped harmonic oscillators with time-varying parameters. This is achieved by exploiting the linearity of the system and operator solution in Heisenberg picture. Our equation governs the non-Markovian quantum dynamics when the system is modulated by external devices. As an application, we apply our equation to parity kick decoupling problems. The time-dependent dissipative coefficients in the master equation are shown to be modified drastically when the system is driven by π\pi pulses. For coherence protection to be effective, our numerical results indicate that kicking period should be shorter than memory time of the bath. The effects of using soft pulses in an ohmic bath are also discussed

    Ultimate intrinsic-coercivity samarium-cobalt magnet: An Earth-based feasibility study for space-shuttle missions

    Get PDF
    Techniques for containerless melting and solidification of the samarium-cobalt alloy without excessive oxidation were developed. The rationale for extending these experiments in a weightless environment is also discussed. The effect of oxygen content from 0.15 to 0.63 weight percent and grain size in the range of 2 to 10 micrometers has been examined on arc-plasma-sprayed SmCo5 magnets. Contrary to expectations, the larger grain sizes tended to improve the coercivities. This was attributed to an increase in homogeneity resulting from higher temperature treatments used to produce larger grain size. No significant differences in coercivity were observed on the basis of oxygen content in the range examined. It is expected that more meaningful data on the relationship between oxygen content and coercivity will be seen when the oxygen content can be lowered to less than 0.1 weight percent

    Global Entanglement for Multipartite Quantum States

    Full text link
    Based on the residual entanglement [9] (Phys. Rev. A \textbf{71}, 044301 (2005)), we present the global entanglement for a multipartite quantum state. The measure is shown to be also obtained by the bipartite partitions of the multipartite state. The distinct characteristic of the global entanglement is that it consists of the sum of different entanglement contributions. The measure can provide sufficient and necessary condition of fully separability for pure states and be conveniently extended to mixed states by minimizing the convex hull. To test the sufficiency of the measure for mixed states, we evaluate the global entanglement of bound entangled states. The properties of the measure discussed finally show the global entanglement is an entanglement monotone.Comment: 6 page

    Basic physical and chemical processes in space radiation effects on polymers

    Get PDF
    The effects of space ionizing radiation on polymers is investigated in terms of operative physical and chemical processes. A useful model of charged particle impact with a polymer was designed. Principle paths of molecular relaxation were identified and energy handling processes were considered. The focus of the study was on energy absorption and the immediately following events. Further study of the radiation degradation of polymers is suggested

    Effects of backing plates on the electron exposure of thin polymer films

    Get PDF
    The effects of backing plates on the radiation dose received by thin nylon films were calculated using recently developed multilayer electron transport codes. The film dose increased with increasing atomic number of the backing plate. The estimated dose could be off by a factor of 2 or more if the backing plate were ignored in the calculations
    corecore