63 research outputs found
One in Four Individuals of African-American Ancestry Harbors a 5.5kb Deletion at chromosome 11q13.1
Cloning and sequencing of 5.5kb deletion at chromosome 11q13.1 from the HeLa cells, tumorigenic hybrids and two fibroblast cell lines has revealed homologous recombination between AluSx and AluY resulting in the deletion of intervening sequences. Long-range PCR of the 5.5kb sequence in 494 normal lymphocyte samples showed heterozygous deletion in 28.3% of African- American ancestry samples but only in 4.8% of Caucasian samples (p<0.0001). This observation is strengthened by the copy number variation (CNV) data of the HapMap samples which showed that this deletion occurs in 27% of YRI (Yoruba – West African) population but none in non- African populations. The HapMap analysis further identified strong linkage disequilibrium between 5 single nucleotide polymorphisms and the 5.5kb deletion in the people of African ancestry. Computational analysis of 175kb sequence surrounding the deletion site revealed enhanced flexibility, low thermodynamic stability, high repetitiveness, and stable stem-loop/ hairpin secondary structures that are hallmarks of common fragile sites
The CA repeat marker D17S791 islocated within 40 kb of the WNT3 gene on chromosome 17q
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30428/1/0000049.pd
Assessing the spectrum of germline variation in Fanconi anemia genes among patients with head and neck carcinoma before age 50
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138837/1/cncr30802.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138837/2/cncr30802_am.pd
Brief Report: Deficiency of Complement 1r Subcomponent in Early-Onset Systemic Lupus Erythematosus: The Role of Disease-Modifying Alleles in a Monogenic Disease
Objective: To identify a genetic cause of early-onset systemic lupus erythematosus (SLE) in a large consanguineous family from Turkey and to study the mechanisms of the disease. Methods: We performed whole-exome sequencing and single-nucleotide polymorphism array genotyping in family members with and without SLE. Protein and gene expression, cytokine profile, neutrophil extracellular trap (NET) formation, and presence of low-density granulocytes were evaluated in patient primary cells and serum samples. Results: We identified a novel, homozygous, loss-of-function mutation (p.Pro445Leufs*11) in the C1R gene. Using the Sanger method of DNA sequencing in 14 family members, we confirmed the presence of the mutation in 4 patients with SLE and in an asymptomatic 9-year-old girl. Complement levels were low in sera from patients with truncated C1r protein. Two siblings with SLE who were available for detailed evaluation exhibited strong type I interferon (IFN) inflammatory signatures despite their disease being clinically inactive at the time of sampling. The type I IFN transcriptional signature in the patients’ blood correlated with disease expressivity, whereas the neutrophil signature in peripheral blood mononuclear cells was likely associated with disease severity. The female patient with SLE with the most severe phenotype presented with a stronger neutrophil signature, defined by enhanced NET formation and the presence of low-density granulocytes. Analysis of exome data for modifying alleles suggested enrichment of common SLE-associated variants in the more severely affected patients. Lupus-associated HLA alleles or HLA haplotypes were not shared among the 4 affected subjects. Conclusion: Our findings revealed a novel high-penetrance mutation in C1R as the cause of monogenic SLE. Disease expressivity in this family appears to be influenced by additional common and rare genetic variants
Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease
Systemic autoinflammatory diseases are driven by abnormal activation of innate immunity. Herein we describe a new disease caused by high-penetrance heterozygous germline mutations in TNFAIP3, which encodes the NF-B regulatory protein A20, in six unrelated families with early-onset systemic inflammation. The disorder resembles Behçet\u27s disease, which is typically considered a polygenic disorder with onset in early adulthood. A20 is a potent inhibitor of the NF-B signaling pathway. Mutant, truncated A20 proteins are likely to act through haploinsufficiency because they do not exert a dominant-negative effect in overexpression experiments. Patient-derived cells show increased degradation of IBα and nuclear translocation of the NF-B p65 subunit together with increased expression of NF-B-mediated proinflammatory cytokines. A20 restricts NF-B signals via its deubiquitinase activity. In cells expressing mutant A20 protein, there is defective removal of Lys63-linked ubiquitin from TRAF6, NEMO and RIP1 after stimulation with tumor necrosis factor (TNF). NF-B-dependent proinflammatory cytokines are potential therapeutic targets for the patients with this disease
Recommended from our members
ZRANB3 is an African-specific type 2 diabetes locus associated with beta-cell mass and insulin response.
Genome analysis of diverse human populations has contributed to the identification of novel genomic loci for diseases of major clinical and public health impact. Here, we report a genome-wide analysis of type 2 diabetes (T2D) in sub-Saharan Africans, an understudied ancestral group. We analyze ~18 million autosomal SNPs in 5,231 individuals from Nigeria, Ghana and Kenya. We identify a previously-unreported genome-wide significant locus: ZRANB3 (Zinc Finger RANBP2-Type Containing 3, lead SNP p = 2.831 × 10-9). Knockdown or genomic knockout of the zebrafish ortholog results in reduction in pancreatic β-cell number which we demonstrate to be due to increased apoptosis in islets. siRNA transfection of murine Zranb3 in MIN6 β-cells results in impaired insulin secretion in response to high glucose, implicating Zranb3 in β-cell functional response to high glucose conditions. We also show transferability in our study of 32 established T2D loci. Our findings advance understanding of the genetics of T2D in non-European ancestry populations
Localization of the human homolog of the yeast cell division control 27 gene (CDC27) proximal to ITGB3 on human chromosome 17q21.3
The human homolog of the Saccharomyces cerevisiae cell division control 27 gene (CDC27) was mapped to human chromosome 17q12-q21 using a panel of human/rodent somatic cell hybrids and localized distal to the breast cancer susceptibility gene, BRCA1 , using a panel of radiation hybrids. The radiation hybrid panel indicates that the most likely position of human CDC27 on human chromosome 17 is between the marker D17S409 and the beta 3 subunit of integrin (ITGB3). Further confirmation of this localization comes from the sequence tagged site (STS) mapping of human CDC27 to the same yeast artificial chromosomes (YACs) positive for ITGB3 . The estimated distance between ITGB3 and human CDC27 is less than 600 kb.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45546/1/11188_2005_Article_BF02257470.pd
Recommended from our members
ZRANB3 is an African-specific type 2 diabetes locus associated with beta-cell mass and insulin response
Abstract: Genome analysis of diverse human populations has contributed to the identification of novel genomic loci for diseases of major clinical and public health impact. Here, we report a genome-wide analysis of type 2 diabetes (T2D) in sub-Saharan Africans, an understudied ancestral group. We analyze ~18 million autosomal SNPs in 5,231 individuals from Nigeria, Ghana and Kenya. We identify a previously-unreported genome-wide significant locus: ZRANB3 (Zinc Finger RANBP2-Type Containing 3, lead SNP p = 2.831 × 10−9). Knockdown or genomic knockout of the zebrafish ortholog results in reduction in pancreatic β-cell number which we demonstrate to be due to increased apoptosis in islets. siRNA transfection of murine Zranb3 in MIN6 β-cells results in impaired insulin secretion in response to high glucose, implicating Zranb3 in β-cell functional response to high glucose conditions. We also show transferability in our study of 32 established T2D loci. Our findings advance understanding of the genetics of T2D in non-European ancestry populations
Structure-Function Analysis of Human TYW2 Enzyme Required for the Biosynthesis of a Highly Modified Wybutosine (yW) Base in Phenylalanine-tRNA
Posttranscriptional modifications are critical for structure and function of tRNAs. Wybutosine (yW) and its derivatives are hyper-modified guanosines found at the position 37 of eukaryotic and archaeal tRNAPhe. TYW2 is an enzyme that catalyzes α-amino-α-carboxypropyl transfer activity at the third step of yW biogenesis. Using complementation of a ΔTYW2 strain, we demonstrate here that human TYW2 (hTYW2) is active in yeast and can synthesize the yW of yeast tRNAPhe. Structure-guided analysis identified several conserved residues in hTYW2 that interact with S-adenosyl-methionine (AdoMet), and mutation studies revealed that K225 and E265 are critical residues for the enzymatic activity. We previously reported that the human TYW2 is overexpressed in breast cancer. However, no difference in the tRNAPhe modification status was observed in either normal mouse tissue or a mouse tumor model that overexpresses Tyw2, indicating that hTYW2 may have a role in tumorigenesis unrelated to yW biogenesis
Human PCK1 Encoding Phosphoenolpyruvate Carboxykinase Is Located on Chromosome 20q13.2
Cytoplasmic liver phosphoenolpyruvate carboxykinase (GTP)(PEPCK) catalyzes a rate-limiting step in gluconeogenesis. Primers derived from the rat liver PEPCK sequence were used to amplify a portion of the human liver cDNA and to screen a YAC library of human genomic DNA. The sequences of human and rat PEPCK cDNA differed at 16% of the nucleotides compared (45/291). Analysis of a human/rodent hybrid mapping panel demonstrated concordant segregation of PCK1 with chromosome 20. Fluorescence in situ hybridization with YAC DNA further localized PCK1 to subband 20q13.2.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31063/1/0000740.pd
- …