23 research outputs found

    Some Aspects of Essentially Nonoscillatory (ENO) Formulations for the Euler Equations, Part 3

    Get PDF
    An essentially nonoscillatory (ENO) formulation is described for hyperbolic systems of conservation laws. ENO approaches are based on smart interpolation to avoid spurious numerical oscillations. ENO schemes are a superset of Total Variation Diminishing (TVD) schemes. In the recent past, TVD formulations were used to construct shock capturing finite difference methods. At extremum points of the solution, TVD schemes automatically reduce to being first-order accurate discretizations locally, while away from extrema they can be constructed to be of higher order accuracy. The new framework helps construct essentially non-oscillatory finite difference methods without recourse to local reductions of accuracy to first order. Thus arbitrarily high orders of accuracy can be obtained. The basic general ideas of the new approach can be specialized in several ways and one specific implementation is described based on: (1) the integral form of the conservation laws; (2) reconstruction based on the primitive functions; (3) extension to multiple dimensions in a tensor product fashion; and (4) Runge-Kutta time integration. The resulting method is fourth-order accurate in time and space and is applicable to uniform Cartesian grids. The construction of such schemes for scalar equations and systems in one and two space dimensions is described along with several examples which illustrate interesting aspects of the new approach

    Multi-Dimensional ENO Schemes for General Geometries

    Get PDF
    A class of ENO schemes is presented for the numerical solution of multidimensional hyperbolic systems of conservation laws in structured and unstructured grids. This is a class of shock-capturing schemes which are designed to compute cell-averages to high order accuracy. The ENO scheme is composed of a piecewise-polynomial reconstruction of the solution form its given cell-averages, approximate evolution of the resulting initial value problem, and averaging of this approximate solution over each cell. The reconstruction algorithm is based on an adaptive selection of stencil for each cell so as to avoid spurious oscillations near discontinuities while achieving high order of accuracy away from them

    A user guide for the EMTAC-MZ CFD code

    Get PDF
    The computer code (EMTAC-MZ) was applied to investigate the flow field over a variety of very complex three-dimensional (3-D) configurations across the Mach number range (subsonic, transonic, supersonic, and hypersonic flow). In the code, a finite volume, multizone implementation of high accuracy, total variation diminishing (TVD) formulation (based on Roe's scheme) is used to solve the unsteady Euler equations. In the supersonic regions of the flow, an infinitely large time step and a space-marching scheme is employed. A finite time step and a relaxation or 3-D approximate factorization method is used in subsonic flow regions. The multizone technique allows very complicated configurations to be modeled without geometry modifications, and can easily handle combined internal and external flow problems. An elliptic grid generation package is built into the EMTAC-MZ code. To generate the computational grid, only the surface geometry data are required. Results obtained for a variety of configurations, such as fighter-like configurations (F-14, AVSTOL), flow through inlet, multi-bodies (shuttle with external tank and SRBs), are reported and shown to be in good agreement with available experimental data

    Development of upwind schemes for the Euler equations

    Get PDF
    Described are many algorithmic and computational aspects of upwind schemes and their second-order accurate formulations based on Total-Variation-Diminishing (TVD) approaches. An operational unification of the underlying first-order scheme is first presented encompassing Godunov's, Roe's, Osher's, and Split-Flux methods. For higher order versions, the preprocessing and postprocessing approaches to constructing TVD discretizations are considered. TVD formulations can be used to construct relaxation methods for unfactored implicit upwind schemes, which in turn can be exploited to construct space-marching procedures for even the unsteady Euler equations. A major part of the report describes time- and space-marching procedures for solving the Euler equations in 2-D, 3-D, Cartesian, and curvilinear coordinates. Along with many illustrative examples, several results of efficient computations on 3-D supersonic flows with subsonic pockets are presented

    Supersonic flow computations for an ASTOVL aircraft configuration, phase 2, part 2

    Get PDF
    A unified space/time marching method was used to solve the Euler and Reynolds-averaged Navier-Stokes equations for supersonic flow past an Advanced Short Take-off and Vertical Landing (ASTOVL) aircraft configuration. Lift and drag values obtained from the computations compare well with wind tunnel measurements. The entire calculation procedure is described starting from the geometry to final postprocessing for lift and drag. The intermediate steps include conversion from IGES to the patch specification needed for the CFD code, grid generation, and solution procedure. The calculations demonstrate the capability of the method used to accurately predict design parameters such as lift and drag for very complex aircraft configurations

    A comparative study of Navier-Stokes codes for high-speed flows

    Get PDF
    A comparative study was made with four different codes for solving the compressible Navier-Stokes equations using three different test problems. The first of these cases was hypersonic flow through the P8 inlet, which represents inlet configurations typical of a hypersonic airbreathing vehicle. The free-stream Mach number in this case was 7.4. This 2-D inlet was designed to provide an internal compression ratio of 8. Initial calculations were made using two state-of-the-art finite-volume upwind codes, CFL3D and USA-PG2, as well as NASCRIN, a code which uses the unsplit finite-difference technique of MacCormack. All of these codes used the same algebraic eddy-viscosity turbulence model. In the experiment, the cowl lip was slightly blunted; however, for the computations, a sharp cowl leading edge was used to simplify the construction of the grid. The second test problem was the supersonic (Mach 3.0) flow in a three-dimensional corner formed by the intersection of two wedges with equal wedge angles of 9.48 degrees. The flow in such a corner is representative of the flow in the corners of a scramjet inlet. Calculations were made for both laminar and turbulent flow and compared with experimental data. The three-dimensional versions of the three codes used for the inlet study (CFL3D, USA-PG3, and SCRAMIN, respectively) were used for this case. For the laminar corner flow, a fourth code, LAURA, which also uses recently-developed upwind technology, was also utilized. The final test case is the two-dimensional hypersonic flow over a compression ramp. The flow is laminar with a free-stream Mach number of 14.1. In the experiment, the ramp angle was varied to change the strength of the ramp shock and the extent of the viscous-inviscid interaction. Calculations were made for the 24-degree ramp configuration which produces a large separated-flow region that extends upstream of the corner

    An annotated catalog of some CFD methodology trends for the nineties

    No full text

    Prediction of separated flows with a new backflow turbulence model

    No full text
    corecore