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SOME ASPECTS OF ESSENTIALLY NONOSCILLATORY 

(ENO) FORMULATIONS FOR THE EULER EQUATIONS 

ABSTRACT 

This report describes an essentially nonoscillatory (ENO) formulation for hyperbolic 

systems of conservation laws. ENO approaches are based on "smart interpolation" to avoid 

spurious numerical oscillations. ENO schemes are a superset of Total Variation Diminishing 

(TVD) schemes . In the recent past, TVD formulations were used to construct shock

capturing finite-difference methods. At extremum points of the solution, TVD schemes 

automatically reduce to being first-order accurate discretizations loc~lly while away from 

extrema, they can be constructed to be of higher-order accuracy. This local effect, which 

is necessary to prevent the Total Variation from increasing, restricts the maximum global 

accuracy possible for TVD schemes to third order for steady-state solutions and second 

order for unsteady computations. The new framework helps construct essentially non

oscillatory finite-difference methods without recourse to local reductions of accuracy to first 

order. Thus arbitrarily high orders of accuracy can be obtained. The basic general ideas of 

the new approach can be specialized in several ways and this report describes one specific 

implementation based on a) the integral form of the conservation laws, b) reconstruction 

based on the primitive function, c) extension to multiple dimensions in a tensor product 

fashion, d) Runge-Kutta time integration. The resulting method is fourth-order accurate 

in time and space, and is applicable to uniform Cartesian grids. The construction of such 

schemes for scalar equations and systems in one and two space dimensions is described 

along with several examples which illustrate interesting aspects of the new approach. 
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Section 1.0 

INTRODUCTION 

Rockwell International's Science Center, under contract with ASA Langley Research 

Center (LaRC), has been developing very powerful numerical methods for the Euler equa

tions. The research began with the development of upwind schemes of first-order accuracy 

based on the Osher scheme and progressed to higher-order TVD schemes encompassing a 

variety of upwind formulations including Osher's and Roe's approximate Riemann Solvers 

(Refs. 1-2). Eventually, LaRC-sponsored research also included certain aspects of ENO 

schemes which are described here within the overall context of a general framework. 

The earlier algorithmic research on TVD schemes culminated in the development of 

the EMTAC (Euler Marching Scheme for Accurate Computations) code for steady invis

cid supersonic flows including subsonic pocket treatment (Ref. 3). The EMTAC code was 

delivered to NASA Langley Research Center in 1987. Rockwell International also devel

oped a multi-zone capability that was built into the EMTAC-MZ code which was initially 

Rockwell proprietary (Ref. 4). As part of an extension to the original contract with NASA 

Langley Research Center, Rockwell agreed to make EMTAC-MZ available to NASA for 

their use and dissemination. The EMTAC-MZ code and its usage are separately described 

in a user manual (Ref. 5). 

This report introduces the general framework in which a new approach has been 

developed for constructing shock-capturing schemes of arbitrarily high orders of accuracy_ 

The report also presents details of one specific implementation that results in a fourth

order accurate method. The new approach is based on ENO interpolation techniques, 

where ENO is an acronym for "Essentially NonQscillatory". 

Until higher-order ENO schemes were developed, TVD formulations were at the fore

front of shock-capturing methods available to the Computational Fluid Dynamics (CFD) 

community. In recent years, many finite-difference methods have been developed using 

TVD formulations along with Riemann Solverss- 9 . These methods manifest many prop

erties desirable in numerical solution procedures. By design, they avoid numerical oscil

lations and "expansion shocks", while at the same time being higher-order (more than 

first-order) accurate. ("Expansion shocks" are shock waves which do not satisfy the en

tropy inequality). TVD formulations are also based on the principle of discrete or numerical 

conservation which is the numerical analog of physical conservation of mass, momentum, 

and energy. This results in TVD schemes being able to "capture" discontinuities with ease 
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and high resolution. The conservation property, the avoidance of numerical oscillations and 

"expansion shocks", the adherence to signal propagation principles (through the Riemann 

Solver), and the achievement of higher accuracy enable TVD formulations to closely follow 

the physical principles built into the mathematical framework of the governing hyperbolic 

systems of conservation laws. 

While TVD formulations are very reliable, versatile, and quite accurate, they do have 

certain inherent accuracy limitations. At extremum points of the solution, TVD schemes 

automatically reduce to being first-order accurate discretizations locally while away from 

extrema, they can be constructed to be of higher-order accuracy. This local effect, which is 

necessary to prevent the Total Variation from increasing, restricts the maximum global ac

curacy possible for TVD schemes to third order for steady-state solutions and second order 

for unsteady computations. These inherent limits were the motivating factor behind the 

development of ENO schemes which can achieve arbitrarily high orders of accuracy while, 

at the same time, essentially avoiding numerical oscillations . TVD schemes restricted the 

total variation from increasing. Higher-order ENO schemes depart from this by permitting 

the variation to possibly increase but in a bounded fashion. The ENO framework therefore 

includes TVD schemes as a subset and provides a natural unification of desip;n principles 

for the construction of good shock-capturing numerical methods. Uniformly accurate ENO 

schemes were introduced by Harten and further developed by his colleagues in Refs. 10-13. 

The ENO formulation can be used to possibly obtain greater computational efficiency 

(same accuracy with fewer numbers of grid points and less work), greater resolution (more 

~ccuracy for a given number of mesh points), and in general to greatly extend the bound

aries of what is achievable utilizing CFD methods. Greater accuracy, in itself, is not 

necessarily difficult to obtain. For fluid flow problems exhibiting a sufficient degree of 

smoothness, finite-difference schemes of any desirable order of accuracy (provided that a 

sufficient number of grid points are available to realize this) can be constructed using either 

Taylor series methods or spectral methods. The real difficulty arises in constructing very 

highly accurate schemes to capture shock waves and to resolve non-smooth high-gradient 

regions. ENO schemes provide an eminent solution to this problem. 

In this report we consider ENO schemes which are based on piecewise polynomial in

terpolation. We also assume that these methods use a Riemann Solver at each cell interface 

to construct the numerical flux based on the left and right states of the dependent variables 

at the cell interface. Other approaches are possible but not considered here. Assuming 

that an exact or a "good" approximate Riemann Solver is used, it is the construction of 
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the left and right states that endows the ENO formulation with its desirable properties. 

For every time step, the left and right states are constructed using piecewise polynomial 

interpolC:Ltion of discrete data related to the approximate cell averages of the dependent 

variables . 

The discussion begins with an introduction to hyperbolic systems of conservation 

laws followed by a presentation of the integral form on which shock-capturing numerical 

methods may be constructed. In such approaches, interpolation plays a direct role and 

"smart interpolation" helps avoid spurious numerical oscillations while also achieving high 

accuracy. In approaches based on the integral form, the cell-average values of the dependent 

variables are ,updated from one time level to the next. Piecewise polynomial pointwise 

behavior of the dependent variables is reconstructed from these cell avarages. Out of many 

po::;sible :r:econstruction techniques, one based on the "Erimitive function" approach (RP) 

is explained for both one and two dimensions. Implementation details including high order 

quadrature formulae for integration of flux along cell boundaries, time-stepping method, 

and extension to systems of equations are all covered followed by detailed presentation of 

several one and two dimensional examples . 

4 



Section 2.0 

HYPERBOLIC SYSTEMS OF CONSERVATION LAWS 

In this report, we study the use of ENO uniformly high-order accurate schemes for 

the numerical approximation of weak solutions of hyperbolic systems of conservation laws. 

Iri one spatial dimension, such systems may be written as 

(2.1) 

Here, fJ. = (ql,"', qrn)T is a state vector and f(q), the flux, is a vedor valued function of 

m components . The system is hyperbolic in the sense that the m x m Jacobian matrix 

A(q) = of/oq 

/ 

has m real eigenvalues 

and a complete set of m linearly independent (right-) eigenvectors. 

For multiple spatial dimensions, the system of equations may be written as 

-- .... 
qt + \1. F = 0 (2.2) 

.... 
where \1 is the gradient operator 

.... 0 0 AO 
\1=i-+j-+k-ox oy oz 

(2.3) 

and 
.... A 

F=iIi+i2j+hk (2.4) 

If we define the Jacobians Ai = ofdoq, the system (2 .2) may be considered hyperbolic if 

the coefficient matrix 

has m real eigenvalues and a complete set of m linearly independent (right-) eigenvectors 

for any real choices of constants Ai. 
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In particular) we will be considering the linear wave equation and th Euler equations 

of fluid dynamics in 1 and 2 space dimensions. 

Scalar wave equation in I-d: 

'Ut + au x = 0 (2.5) 

Scalar wave equation in 2-d: 

Ut + au x + buy = 0 (2.6) 

Euler equations in 1-2: 

(2 .7a) 

with 

(2 .7b) 

Euler equations in 2-d: 
aq ah a12 _ 0 
at + ax + ay - ) (2.8a) 

with 

q = ( ;) h = (( e ;:)u ) 2 = (( e ;:)v) . 
pu' pu 2 + p,J puv 
pv pvu pv 2 + p 

(2.8b) 

In the Euler equations above, p is pressure, p is density, and the Cartesian velocity 

components are u and v in the x and y directions, respectively. The total energy per unit 

volume, e, is given by e = p/b - 1) + p(u 2 + v 2 )/2 where 1 is the ratio of specific heats 

assuming "perfect gas". 

It is desirable that numerical methods devised to solve the above equations a) provide 

the desirable order of accuracy, b) mimic the signal propagation properties of hyperbolic 

systems and c) permit weak solutions (piecewise continuous) to be obtained. 
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Section 3.0 

INTEGRAL FORM FOR CONSERVATION LAWS 

Methods hased on the integral form of the system of conservation la.ws can satisfy the 

three goals just outlined. We can derive the integral form by starting from the conservation 

laws described in their differential form in the previous section . For example, beginning 

with Eq. (2.1) and integrating with respect to x and i, we obtaiI'. 

11 (qt + f(q)x) dx dt = 0 (3.1) 

(3.2) 

(3.3) 

where tn, tn+1 and Xj+l/2, Xj-l/2 define the limits of integration, 

(3.4a) 

is the cell average of the dependent variables and 

- 1 l tn
+

1 

fj±1/2 = t::.t t
n 

f dt (3.4b) 

is the average flux along cell boundaries over an interval of time. 

Eq. (3.3) is the fully discrete integral form of the 1-d system of conservation laws 

presented as Eq. (2.1) and can also be written as 

(3.5) 

Even though Eq. (3.5) resembles a finite-difference formula, it must be noted that it is 

an exact relation that must be satisfied by any exact solution of the differential equations. 

The integral form of the equations does not demand the existence of derivatives but only 

weaker conditions of integrability and solutions of Eq. (3.5) can also therefore include 

"weak solutions.)) 
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The semi-discrete version of Eq. (3.5) can b written as 

~ ~ 

aij + Ij+1/2 - Ij-1/2 = 0 
at 6x 

(3.6) 

and can either be obtained by integrating Eq. (2.1) only with respect to x or by taking 

the limit 6.t -t 0 in Eq. (3.5). In Eq. (3.6), jj±1/2 is the flux at cell boundary Xj±1/2 ' 

The corresponding semi-discrete and fully-discrete integral forms of the multidimen

sional system of conservation laws (2.2) can also be easily obtained. For example, inte

grating Eq. (2.2) with respect to the spatial coordinates, we obtain 

(3.7) 

where V denotes the volume of the multidimensional conservation cell under consideration. 

Eq. (3.7) reduces to 

(3 .8) 

where S denotes the surface that encloses the conservation cell and n is the unit nonnd n.t 

any point of the surface. We will see later how the boundary integration can be approx

imated by numerical quadrature in the context of numerical methods to solve Eq. (3.8). 

We now further reduce Eq. (3.8) to 

a r -
at (ijV) + } sF. n dS = 0 (3 .9) 

where the cell average ij is defined in the usual way for a multidimensional formulation. 

We have already seen that a) no derivatives appear in the fully discrete integral form 

and b) no spatial derivatives appear in the semi-discrete form. We observe additionally 

that: c) the dependent variables in the integral form are the cell averages of the original 

dependent variables of the differential form of the equations; d) while we will develop 

numerical methods directly for the integral forms, methods can also be developed directly 

from the differential form in a fashion that would still ensure that weak solutions can be 

computed (by obeying principles of discrete conservation). 
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Section 4.0 

NUMERICAL METHODS BASED ON THE INTEGRAL FORM 

We observed in the last section that Eq. (3.3) resembled a finite-difference formula 

that may be used to advance the cell averages ij from one time level to the next if the cell 

boundary (face) values of the fluxes can be defined. Eq. (3 .9) for the multidimensional 

equations is similar. The key is being able to obtain the cell face values of the flux from 

known values of ij. This may be accomplished using piecewise polynomial interpola:'ion. 

Consid.er the initial value problem for Eq. (3.3) defined by adding to that equation 

the initial conditions qJ,j = 1,· . . ,.J. Then, a numerical algorithm to solve Eq. (3.3) m~y 

be defined as follows: 

a) Interpolate ijj to obtain piecewise polynomial pointwise behavior of q within each cell. 

b) Ea.ch polynomial (within each cell) may be evaluated at Xj±1/2 for that cell. Col

lecting all such values, we find that we have, at each cell face, left and right values 

(qL, qR)j+l/2. 

c) Resolve the discontinuity at each cell face using solutions to the Riemann problem. 

(The solution procedure is usually referred to as the Riemann Solver.) This will result 

in a knowledge of }j+l/2 which we shall henceforth call the numerical flux. 

d) Substitute }j±1/2 into Eq. (3.3) to advance the solution to the next time level. Proceed 

to step (a) and repeat. 

Notes: 

1) In step (a), we must construct piecewise polynomials that match the given cell aver

ages. This is different from the usual interpolation of discrete pointwise values. There 

are at least three different ways of performing such interpolation in order to recon

struct the pointwise behavior of the original dependent variables in each cell - i) 

reconstruction by deconvolution (RD), ii) reconstruction using the primitive function 

formulation (RP), and iii) reconstruction by matching cell averages directly (RM). 

The second method, RP, will be explained in this report . 

2) One may wonder why piecewise polynomials should be used, especially when one sees 

in step (b) that this will lead to discontinous behavior at cell interfaces . In fact, the 

choice of piecewise polynomials is particularly apt for just that reason. After all, we 
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must allow our interpolation model to permit discontinuities since our goal is to be able 

to compute' weak" solutions. It is true, however, that with piecewise polynomials of 

the type described in this report , the approximation always pushes any discontinuity 

to be at the cell interfaces . Further refinements have already been devised to enable 

discontinuities to be located even within the cell C"subcell resolution" - Ref. 14) but 

it is beyond the scope of this report to delve into such advances. 

3) When dealing with systems of equations, questions arise regarding the choice of vari

ables to interpolate: should the reconstruction techniques be based on matching the 

basic conservation variables' averages, "primitive" variables', "characteristic" varI

ables ', etc.? These issues are briefly revisited in a later section. 

4) In the case of interpolation with piecewise-constant polynomials, if we consider two 

neighboring cells, we have two sets of constant values , one to the left of and one 

to the right of each cell interface. This resembles the classical Riemann problem. 

When higher degree polynomials are chosen, the left and right states are not constant 

but a Riemann Solver may still be used to construct the solution at the instant of 

initial contact between the discontinuities. More sophisticated Riemann Solvers may 

also be sought - those that resolve piecewise linear left and right state variations, 

etc. In this ;:eport, the semi-discrete formulation is utilized to construct higher-order 

time-accurate schemes. It may be observed by looking at Eq. (3 .6) that if we use a 

method-of-lines approach and embed the semi-discrete form in a Runge-Kutta time

integration scheme, for example, then only the pointwise values of the cell interface 

fluxes are required. These can be obtained using a Riemann Solver based on local 

values of left and right states. 

G) Going back to note (2), we can also add that for smooth data, the magnitude of the 

difference between qL and qR behaves with OC 6 xr+l) where r is the degree of the 

interpolating polynomial. Thus, the piecewise polynomial approach is appropriate 

for obtaining both smooth solutions and solutions with discontinuities. For smooth 

solutions, the need for using "good" Riemann Solvers becomes decreasingly important 

with increasing degree of polynomial approximation. 

6) The procedure for multidimensional flows is similar to that for one-dimensional prob

lems. Interpolation in step (a) must be carried out in a suitable multidimensional way. 

The boundary integration of Eq. (3.9) can be replaced by a suitable quadrature. The 

need for a multidimensional Riemann Solver can be obviated by exploiting a suitable 

combination of several pointwise (in time and space) Riemann problems. 

10 
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We now use a set of figures to help visualize the above concepts. Figure 1 simply 

outlines the integration limits for the 1-d integral form. Figure 2 shows how an initial 

value problem (IVP) for Eq. (2.1) can be replaced by the corresponding one for cell 

averages given by Eq. (3.5). Assuming that piecewise constant reconstruction was used , 

Figure 3 zooms in on one local Riemann problem (IVP with piecewise constant states) and 

Figure 4 helps visualize how the individual Riemann problems, taken together, provide the 

means to update the cell averages to the next time level. 

In the following sections, we consider the t.wo important steps of the solution procedure 

in more detail: 1) the Riemann Solver, and 2) interpolation. 

11 
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t 

(n+ 1) ,.,Jr------r------r------.. 

--------------------------------~~ ~x 
n~t j-1/2 j+1/2 

Figure 1. 1-d integration cell limits 
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INITIAL VALUE PROBLEM 

qt+fx=O 

q (O,x) = q 0 (x) INITIAL VALUE 

--- qo(x) 

------- CELL AVERAGES 

Figure 2_ IVP for cell averages 
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RIEMANN SOLVER 

, 
~\ / .,', \\ 
'" \ I / •• ,~\ .... 

u LEFT ~ •••• U RIGHT 
•• 

~----------~~------------x 

U 

~------------~-------------x 

x=O 

R 
f = FLUX AT- x j+1/2, t=O+£ 

f IS OBTAINED BY USING 
A KNOWLEDGE OF DECOMPOSITION 
OF INITIAL DISCONTINUITIES 

Figure 3. Riemann Solver 
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USING RIEMANN SOLVER 

1\ 1\ 
-n+1 - n f f 
q - q + j+ 112 - j-1/2 = 0 

i1t i1x 

, I / 
, I / , / 

, I / 
, I / , / 

, I / 
, I / , / 

WE DEFINE f = f RIEMANN 

qRIEMANN, 
A f(q RIEMANN) 
1.\ 1 

o 

Figure 4. Using Riemann problem solutions 
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"1" • ''I'' • ''I'' • ''I'' • ''I'' • ''I'' • ''I'' • ''I'' 

/// 

PIECEWISE LINEAR INTERPOLATION 

"" " ---.--

--e--
--e--

x ~ 

Figure 5. Piecewise constant and linear interpolations 
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Section 5.0 

THE RIEMANN SOLVER 

The Riemann problem is an initial value problem with piecewi3e constant initial data 

(one set to the left of the origin and the other to the right). It is similar to the "shock 

tube problem" of gasdynamics where at t = 0, a diaphragm separates the left state from 

the right. In the shock tube, the bursting of the diaphragm brings t.he left and right states 

together. In the mathematical statement, we keep the left and right states separated at 

t = 0 and at t > 0, we let the two states interact. 

"Riemann Solver" is the name given to the procedure that constructs the solution 

to the Riemann problem. The exact solution for the linear wave equation and the Euler 

equations mentioned in Section 2.0 are well known. The solution comprises a quantitative 

knowledge regarding q(x, t) for -00 < x < +00 and t > O. It turns out that the solution 

is self similar in the variable 8 = x/to Therefore, q(x, t) = qR(8), with the superscript R 

denoting the Riemann problem. 

The exact. solution to the Riemann problem for the equations in Section 2.0 is made up 

of piecewise constant states separated by transitions. Each transition is associated with an 

eigenvalue of the Jacobian matrix. For the 1-d Euler equations , there are three eigenvalues 

u - c, u and v + c, where c is the speed of sound (c = VIP/ p). The transitions ast30ciated 

with u ± c can either be a shock wave or a rarefaction and that associated with u is called 

a contact discontinuity. Reference 1 provides formulae for the construction of the exact 

solution. In particular, this provides the extents of the piecewise constant states and the 

magnitudes of the transitions. From this information, the value of q along the ray 8 = 0 

may be determined. We denote this by qR and the corresponding flux as fR = f(qR) . 

Consider now Eq. (3.6) and the steps (a)-( d) of the solution procedure given in Section 

4.0. We assume piecewise constant behavior of dependent variables 

q(x) = if]' Xj-l/2 < x < Xj+l/2 (5.1) 

This results in local Riemann problems which can be solved to construct 

These numerical fluxes can be substituted into Eq. (3.6) along with a suitable time

stepping procedure to advance ifj. 

17 
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Since for hyperbolic systems it takes finite time for spatia lly separated locations to 

influence each other, for a sufficiently small time step, the Riemann problem from Xj-l/2 

will not affect the solution to the Riemann problem at Xj+1/2 and vice-versa. We call 

such a t ime step as 6.tCFL with the subscript referring to the Courant-Friedrichs-Lewy 

stability limi t for linear equ ations. 

(5 .3) 

and therefore t he fully discrete form, Eq. (3.5) may also be used to advance tr.e 30lution 

qj. 

\~lt; lii :.1!';t nOJt.~ that, when there are source terms in 1-d, for hig}:l f>:-ordel r'olY110mial 

interpolation, and for multidimensional problems, it is still true that two spatially separated 

Riemann problems will not influence each other for a sufficiently small interval of time. 

However , each Riemann problem solution is no more self similar under these circumstances 

and therefore Eq. (5 .3) is not true. In such cases, it is convenient to r esort to the method 

of lines (semi.-discrete) approach . 

"V!e now illustrate three properties: 

1) Discretization methods such as those described in this section (which use a Riemann 

Solver) are "upwind" schemes. 

2) Methods based on piecewise constant interpolation are only first-order accurate. 

3) First-order accurate upwind schemes are monotonocity preserving. 

When a Riemann flux is used as the cell interface flux, the fully discrete integral form 

defined in Eq. (3.5) becomes 

(5 .4) 

where !j+1/2 = ffH/2' Adding and subtracting fj from the second term on the right hand 

side (RHS), we can rewrite that term to be 

(5.5) 

The term !j+1/2 - fj includes the effect of all left-moving waves from the right. The term 

fj - !j-1/2 includes the effect of all right-moving waves from the left. Therefore, Eq. (5.4) 

18 
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describes a method of updating ijj that accounts for the appropriate signal propagation 

effects, and hence describes an "upwind" scheme. Note that this was goal (b) identified at 

the end of Section 2. 

We leave it to the rea.der to show that when a > 0 in Eq. 2.5, 

(5.6) 

and therefore, we obtain 

(5.7) 

Once again, we see that the numerical algorithm defined using piecewise constant polyno

mials and a Riemann Solver results in an "upwind" scheme. 

For piecewise constant and piecewise linear polynomial approximations , the value of 

the cell average is also the pointwise value at the midpoint of each celL Thus , rewriting 

Eq. (5 .7) as 

n+l n (n n) u · =u · -1/ u · -u · 1 J J J J- (5.8) 

where 1/ = a 6.t/ 6.x, we see that 

(5.9) 

and therefore the method is monotonicity preserving for the linear wave equation as long 

as 1/ ~ L It is clear that the values uj+l will be bounded by the maxima and minima of 

u j, and if the u j described a monotone profile, then u j+ 1 will preserve such monotonici ty. 

A Taylor-series analysis of Eq. (5.8) will also show that the finite-difference scheme is 

first-order accurate. 

As motivation for the following sections, we look at Eq. (5.9) from the following 

perspective. For the linear wave equation, the solution uj+l should be equal to the solution 

at t = tn at the foot of the characteristic drawn backwards from x j, tn+l. The RHS of Eq. 

(5.9) is equal to that value computed using linear interpolation of the discrete values uj 
and Uj_l' 

We now describe some generalizations that we can use as framework for describing 

many schemes including those that are based on "approximate" Riemann Solvers or even 

19 
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those t hat are not based on Riemann Solvers at all. Extending the second term on the 

RHS of Eq. (5.4) even further along the lines shown in Eq. (5 .5), 

f
A. _ f(qR)j+1/2 + f(qL)j+1/2 _ (f(qR)j+1/2 - fI~t-l/2) - (J}~.1/2 - f(qL)j+1/2 ) 
J+1/2 - 2 2 

(5. 10) 

Note the use of superscript R to denote the Riemann problem solution and the subscripts 

R and L to denote right and left states. This can be rewritten, after dropping the subscript 

j + 1/2, as 
j = f (qR) + f(n) _ (df)+ - (df)-

2 2 
(5 .11 ) 

It is shown in·Ref. 1 how this form call l~. e used to represent methods usilig Osher's or Roe:s 

approximate Riemann Solvers in addition to that using t he exact Riemann Solver described 

earlier in this section (also known as the Godunov scheme) . In fact, Eq. (5 .11 ) can be used 

to represent even Split-Flux schemes as well as schemes that do not use Riemann Solvers 

at all. For example, 

(5. 12) 

where cp can be a positive constant following the Lax-F~.iedrichs scheme or computed as 

the absolute value of the maximum local eigenvalue in the manner of the Rusanov scheme. 

We have already observed that such simpler approaches become quite useful with higher 

degree polynomial interpolation. 

20 
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Section 6.0 

THE ROLE OF INTERPOLATION 

Considering the semi-discrete form Eq. (3.6) or (3.9), we observe that even if we are 

able to use an exact time-stepping scheme, we must contend with the inaccuracies of the 

polynomial approximations used for the spatial discretization . Therefore we now take a 

detailed look at piecewise polynomial approximations. 

The role of interpolation , in the context used, is to provide a way to reconstruct the 

pointwise behavior from a knowledge of the cell average values of the dependent variables. 

Considering I-d for simpli city, we assume that the dependent variables q are described by 

the polY:!lomials Pj (1.) in each cell j. 

r 

P j ( x) = 2:: bij x i (6.1) 
i=O 

where bi ar~ the polynomial coefficients and r is t he degree of the interpolating polynomial. 

Any polynomial that we choose must satisfy the requirement that 

(6.2) 

In words, the average of the interpolating polynomial must equal the cell average values 

of the dependent variables . Similar relations may be easily obtained for multidimensional 

problems. 

For the case of a piecewise constant description, it is easy to see that 

bOj = ijj (6.3) 

In this case, the polynomial for each cell j is completely determined from the cell average 

value ijj for that cell. We have already seen that this results in a first-order accurate 

upwind scheme when used with a Riemann Solver. 

For polynomial interpolation of degree 1 or higher, we cannot define the polynomial 

coefficients in each cell by just considering ijj of that cell. We can define the coefficients, 

however, by matching the cell averages at the required number of neighboring cells. This 

is the method of reconstruction by matching cell averages directly, identified as RM in 
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Section 4.0. For example, bOj and bIj can be defined uniquely by applying Eq. (6 .2) to 

cells j and j - 1. We can also define them by matching ifj+l and ifj . We therefore have 

two choices of piecewise linear polynomials as well as t he old choice of piecewise constant 

polynomial. These choices are illustrated in Figure 5. For interpolation polynomials that 

are not of higher degree than piecewise linear, the cell average values ifj are also equal to 

q( x j), the mid point value of the dependent variables. 

For specific values of ifj = q( x j) shown in Figure 5, on the right hand side of the figure, 

piecewise constant interpolation is indicated. On the left half of the figur~, both choices of 

~)iecewise linear interpolation are shown for each cell. It b ecomes clear that some choices 

may be better than others if we do not want to introduce new extrema via the interpolation 

prec.ess . In some cells, the choice based on ifj, ifj-l may be preferable to the one based on 

ifJ+l; ifj, while in other cells, the reverse may be true. At local maxima or minima, either 

choice would introduce new extrema, and if that is to be strictly avoided, one must revert 

to piecewise constant interpolation locally. Methods that seek to strictly avoid introducing 

new extrema along the lines described above, are known as TVD schemes. The advantages 

and drawbacks of TVD formulations were described in the introductory section. 

The goal is therefore to obtain polynomial interpolation of as high a degree that is 

compatible with the desired order of accuracy and simultaneously avoid spurious numer

ical oscillations caused by extrema introduced via polynomial interpolation. Along the 

lines covered for TVD schemes, the approach is to use "smart" interpolation. However, to 

achieve uniformly high orders of accuracy, we do not want to hybridize with piecewise con

stant behavior anywhere. The goal is therefore to construct ENO interpolation by choosing 

the best polynomial among the alternatives available of equal degree of interpolation. ENO 

int.erpolation is covered in detail in the next section. 
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Section 7 .0 

ENO INTERP OLATION 

While the previously described framework covers both scalar and systems of hyper

bolic conservation laws, in the remaining subsections we restrict our attention to scalar 

equations. The interpolation procedure for systems of equations will be described in a 

later section. 

In this section, we introduce Hm(Xi w), a piecewise polynomial function of x that 

interpolates w d the points {x j}, i.e ., 

(7.1.1) 

(7.1b) 

where P m,j+l/2 is a polynomial in x of degree m. 

We take Pm ,j+l/2 to be the (unique) (m-th)-degree polynomial that interpolates w(x) 

at the (m + 1) successive points {xd , im(j) ~ i ~ im(j) + m, that include Xj and Xj + 1, 

I.e. 
Pm,j+l/2(XiiW) = W(Xi) 

for im(j) ~ i ~ im(j) + m 
(7.2a) 

(7.2b) 

Clearly there are exactly m such polynomials corresponding to the m different choices 

of im(j) subject to Eq. 7.2b. This freedom is used to assign to (Xj, xj+d a stencil of m + 1 

points (Eq. 7.2) so that w(x) is "smoothest" in (Xim(j), Xim(j)+m) in some asymptotic sense. 

The information about smoothness of w( x) is extracted from a table of divided differ

ences of w. The latter can be defined recursively by 

W[Xi, ... ,Xi+k] = 

(W[Xi+ l ' ... ,Xi+k] - W[Xi, ... ,Xi+k-lJ) 

(Xi+k - Xi) 
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The algorithm to evaluate im(j) is recursive. We start by setting 

(7.4a) 

l.e. P1 ,j+l/2 is the first-degree polynomial interpolating W at x j and x j+l. Let us assume 

that we have already defined ik(j), i.e. Pk,j+l /2 is the (k-th)-degree polynomial inter

polating w at Xidj),··· ,Xidj)+k. We consider now as candidates for Pk+1 ,j+l/2 the two 

((k + l)-th)-degree polynomials obtained by adding to the above stencil the neighboring 

point to the left or the one to t.he right ; this corresponds to setting i k+1 (j) = ik(j) - 1 

or ik+l(j) = ik(j), respectively. We choose the one that gives a (k + l)-th order divided 

difFerence that is smaller in ah!':nlute value, i.e. 

{

ik(j)-l 

Zk+l (j) = 

ik(j) 

if IW[Xidj)-l,·· · , Xidj)+kll 

< IW[Xik(j),··· , Xi k (j)+k+lll 

otherwise. 

In two dimensions, we will adopt a tensor-product approach in this report: 

P(X , y) = PX(x)pY(y) 

(7.4b) 

(7.5) 

In this fashion , we can use the one-dimensional "best" polynomials defined above in order 

to construct both one-dimensional and two-dimensional reconstructions. This forms the 

subject matter of the next section. 

Procedure 1 is a FORTRAN subprogram to determine the best I-d stencil. It is 

invoked repeatedly, in Procedure 2, to compute the best stencil in each direction. We will 

see in the next section how such stencils may be used in 2-d reconstructions. 
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subroutine ninter(ii,du,ni,n) 
dimension u(50),ii(50),du(4,50) 

c **************************** 
c nonoscillatory interpolation 

c **************************** 
do 30 m=2,ni 
do 35 i=1,n-1 

35 du(m,i)=du(m-1,i+1)-du(m-1,i) 
du(m,n)=du(m-1, 1)-du(m-1,n) 
do 40 i=1,n 
iO=ii(i) 
ip=iO 
if(ip.le.O)ip=ip+n 
im=iO-1 
if(im . le.O)im=im+n 
ii(i)=iO+imn(du(m,im),du(m,ip» 

40 continue 
30 continue 

return 
end 
function imn(x,y) 
imn=O 
if(abs(x).le.abs(y»imn=-1 
return 
end 

Procedure 1. Nonoscillatory interpolation 
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subroutine stencil(u,ii,jj,nx,ny) 
dimension u(50,50),ii(50,50),jj(50,50) 
dimension du(4,50),kk(50) 
do 10 i=1,nx 
do 5 j =1 ,ny 
du(l,j)=u(i,j) 

5 kk(j)=j 
call ninter(kk,du,4,ny) 
do 7 j=l,ny 

7 jj(i,j)=j-kk(j) 
10 continue 

do 20 j=1,ny 
do 25 . i=1,nx 
d u (1 , i) =u (i , j ) 

25 kk(i)=i 
call ninter(kk,du,4,nx) 
do 27 i=1,nx 

27 ii(i,j)=i-kk(i) 
20 continue 

return 
end 

Procedure 2. Best stencils in each direction 
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Section 8.0 

RECONSTRUCTION BY PRIMITIVE FUNCTION 

Given cell averages tv of a piecewise smooth function w 

1 l Xj
+

1
/

2 

Wj = - w(Od~ 
h· J Xj_l/2 

(8.1) 

we can imm(~diately evaluate the point-values of the primitive function VV( x) 

by 

Y,F(x) = (X w(y)dy 
Jxo 

J 

W(Xj+l/2 ) = L Wj 

(8.2a) 

(8 .2b) 

Since w(x) == :x W(x) we apply interpolation to the pointwise values (Eq. 8.2b) of the 

primitive function W( x) and then obtain a pointwise reconstruction by defining 

(8.3) 

While there are several ways to reconstruct pointwise behavior in 2-d ) we present one 

specific method here based on the primitive function and a tensor-product approach. 

The two-dimensional cell average w of a piecewise smooth function w is defined to be 

(8.4a) 

where 

(8.4b) 

In the above) we have assumed a Cartesian grid. We can immediately evaluate the point 

values of the primi tive function W(x) y). 

W(x)y) = l Y1X 

w(~)7])d~d7] 
Yo Xo 

(8 .5a) 
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by 
k j 

W(Xj+l/2) Yk+l /2) = L L Wjk 

ik=ko ij=jo 

(8.5b) 

Since w(x,y) == a~~y W (x, y) , we apply interpolation to the pointwise values (Eq. 8.5b) of 

the primitive function W( x, y) and then obtain a pointwise reconstruction by defining 

(8 .6) 

We not.e .that the above procedures do not require uniformity of the mesh but only that 

the mesh is Cartesian and not curvilinear. The non-oscillatory nature of the reconstruction 

follows primarily from the nonoscillatory nature of the interpolation. We also note that 

in the above description, w represents the dependent variable or other quantity b eing 

interpolated . 

Procedure 3 presents a FORTRAN subprogram to develop a table of coefficients to be 

used to efficiently compute two-dimensional reconstruction at the center of a cell. Proce

dure 4 presents a subprogram to perform 2-d reconstructions using the stencils generated 

in Procedures 1 and 2. Such reconstruction is necessary, for example, to compare numer

ical results for pointwise values at the center of the cell with analytic solutions. Similar 

reconstruction is required to evaluate qL and qR at Gaussian quadrature points along cell 

boundaries. 
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subroutine rctble 
common/rc/dlprc(4,4) 
al=O.5 
do 20 k=1,4 
zk=k+al-1 . 
do 20 j=1,4 
pr=1. 
srn=O. 
do 15 rn=0,4 
if(rn . eq.j)goto15 
anw=zk-rn 
pr=pr*anw/float(j-rn) 
srn=srn+1 . /anw 

15 continue 
20 dlprc(j,k)=pr*srn 

write(8,*)'dlprc' 
do 30 j=1,4 
write(8,*)j,(dlprc(j,k),k=1,4) 

30 continue 
return 
end 

,,-- _.- - ._----

Procedure 3. Constructing table of reconstruction coefficients 
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c 

subroutine rcnst(u,uu,nx,ny) 
common/rc/dlprc(4,4) 
common/d/a,b,almdx,almdy 
dimension u(50,50),uu(50,50) 
dimension wgs(50,50) 
dimension ii(50,50),jj(50,50) 

call stencil(u,ii,jj,nx,ny) 

do 10 i=1,nx 
do 10 j=1,ny 
kj=jj (i,j)+1 
jbg=j:-kj 
do 10 1=1,2 
sm=O. 
smu=O. 
do 5 jlg=1,4 
jv=jbg+jlg 
if(jv.gt.ny)jv=jv-ny 
if(jv.lt. 1)jv=jv+ny 
smu=smu+u(i ,jv) 

5 sm=sm+smu*dlprc(jlg,kj) 
10 wgs(i,j)=sm 

do 20 i=1,nx 
do 20 j=1,ny 
ki=ii(i,j)+1 
ibg=i-ki 
sm=O. 
smu=O. 
do 15 ilg=1,4 
iv=ibg+ilg 
if(iv.gt.nx)iv=iv-nx 
if (iv.lt. l)iv=iv+nx 
smu=smu+wgs(iv,j) 

15 sm=sm+smu*dlprc(ilg,ki) 
uu(i,j)=sm 

20 continue 
return 
end 

Procedure 4. Two-dimensional tensor-product reconstruction 
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Section 9.0 

SYSTEMS OF EQUATIONS 

It is easy to construct ENO formulations for systems of equations such as the Euler 

equations. Often it suffices to treat each dependent variable in the fashion described earlier. 

For best results in situations involving moving discontinuities, it preferable to treat each 

wave field using t.he scalar ENO formulation. A few more implementation details are given 

here for convenience. 

First we consider I-d problems. For systems of equations, we choose one stencil for 

e,,--ch wave field in each cell. Let R be the matrix of right-eigenvectors (the columns of R 
are right-eigenvectors rP ). Let L be the matrix of left- eigenvectors (the rows of L are the 

left-eigenvectors IP). For convenience in what follows, let RL = J, wh rc J is the identity 

matrix. The individual left and right eigenvectors can always be suitably normalized to 

achieve this identity. In order to decide which stencil to use for wave-field p, we compare the 

dot products of ZP with the two choices for the divided differences of the vector of dependent 

varia;)les. For each wave field, the comparison is therefore of two scalar quantities. 

For the one-dimensional Euler equations, there will be three stencils defined in each 

cell , one for each local characteristic variable defined by L j · Wj . Using these three stencils, 

it is possible to reconstruct three sets of vector valued states to the left and right of each 

cell interface. Denote the p-th set defined at the left face of cell j by W~~1/2 and denote 

the p-th set defined at the right face of cell j by w~;1/2. Let Wt-l/2 and wj+l/2 be the 

values to bp. used in the Riemann Solver. We construct these from the individual sets 

corresponding to each wave field using 

3 

wt-l/2 = L (Zj . W~~1/2) rj 
p=l 

3 
(9. 1) 

Wj+l/2 = L (Z~ . W~';1/2) r~ 
p=l 

For the 2-d Euler equations , we can apply the same procedure direction by direction 

since we are using a tensor-product approach in this report. 
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Section 10.0 

SOLUTION PROCEDURE 

For most solutions presented in this report, the fourth-order accurate Runge-Kutta 

method was used to advance the solution in time using the semi-discrete approaches pre

sented in previous sections. Some solutions for the l -d scalar wave equation were obtained 

by other methods such as reconstruction by deconvolution, fully-discrete formulations, etc., 

but are presented here for completeness. 

For 2-d problems, the cell boundary integrals of Eq. (3.9) were evaluated using Gaus

sian quadrature. A two point quadrature was used for each of the four sides for the 

fourth-order accurate results. Tables of interpolation coefficients were computed, simi

lar to the presentation in Subroutine Rctble of Procedure 3 given in an earlier section. 

to simplify the evaluation of first derivatives along the x and y directions at Gaussian 

quadrature points on cell boundaries. Another computational efficiency was achieved by 

computing the best stencil only once for each time step and using these for all stages of 

the Runge-Kutta scheme. 

For the examples to be presenteJ , only the fixed and periodic boundary conditions 

were required. The FORTRAN procedures given earlier assume periodic behavior but 

can be easily modified for non-periodic cases. The procedures also assumed that no grid 

stretching was used in either coordinate direction. This specialization was useful for all the 

results presented but can be generalized so that the method can be applied to Cartesian 

grids with direction-by-direction stretching. 
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Section 11.0 

ONE-DIMENSIONAL EXAMPLES 

We now present several one-dimensional examples to illustrate various aspects of ENO 

schemes. 

Polynomial Interpolation 

Figure 6 illustrates the advantages of ENO polynomial interpolation. The highly os

cillatory curve in Figure 6a was obtained by standard 6-th degree piecewise polynomial 

interpolation - in every cell, the same relative stencil was used independent of the data. 

The circle symbuls are the discrete values sampled to obtain the piecewise polynomial 

interpolation. The other curve passing through the circles is the analytically defined func

tion based on which the discrete values were ·obtained. In contrast, Figure 6b shows the 

piecewise polynomial interpolation obtained using the I -d ENO reconstruction method 

described earlier in this report. 

Wave Equation - Sine wave 

In the next example, the linear wave equation is solved on a very coarse grid with only 

6 intervals. A periodic boundary condition is used. Figures 7a-d compare the numerical 

solution obtained with various orders of accuracy with the analytic solution after the sine 

wave has moved one cycle through the grid. In these figures, the circular symbol denotes 

the cell average value of the dependent va.riable. The analytic solution is an exact sine 

wave. The piecewise polynomial interpolation is also shown in each cell. The left and right 

values at each cell interface are connected by a vertical line. The improvement in accuracy 

with higher-order ENO formulations is clearly seen. Figure 8 portrays a composite of such 

individual results. 

Polynomial Interpolation 

The previous example used smooth initial data and therefore was not really a good il

lustration of the ENO properties of the scheme. Now, we present results for the linear wave 

equation but with the initial data corresponding to the first example. Figures 9a-d show 

how increasingly higher-order ENO formulations improve accuracy without introducing 

spurious numerical oscillations. 
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Damping Random Oscillations 

In the next example, we start with sine wave initial data but add random perturbations 

to it (with maximum magnitude 0.1). Figure lOa shows the basic sine wave profile along 

with the initial dat.a, with the square symbols denoting the cell center values . Figure lOb 

shows the numerical solution obtained with a 4-th order accurate ENO formulation aft er 

1 cycle through the mesh assuming periodic boundary conditions. Notice how the highly 

oscillatory behavior of the initial data has been damped out but the smooth mean profile 

is propagated wi thou terror. 

Shock Tube - Sod's Problem 

The next example uses the I -d Euler equations with ini tial data proposed by Sod. Fig

ures lla-c show a comparison of the numerical solution (symbols) with the exact solution 

(solid line) for density. Figures 12a-c show a comparison of the velocity profiles. ote the 

improvement in accuracy from 1st to 2nd order accuracy and the marginal improvement 

beyond 2nd order - in this case, because of the relative lack of higher gradients except 

near t he transition points. In this example, characteristic variable interpolation was used. 
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Figure 6a. Piecewise polynomial interpolation 
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Figure 6b. Sixth-order non-oscillatory polynomial interpolation 
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Figure 7b. TVD second-order accuracy 
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Figure 7d. END sixth-order accuracy 
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Figure 9b. TVD second-order accuracy 
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Figure 9c. ENO third-order accuracy 

1.25 

0.75 

0.25 

u 

-0.25 

-0.75 

- 1.25 +-----,-----,--------,-----r---~ 
-1.0 -0.6 -0.2 0.2 0.6 1.0 

x 

Figure 9d. ENO fourth-order accuracy 
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Figure lOa. Initial data - sine wave with random noise 
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Figure lOb. Results after one cycle 
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Figure 11a. Sod problem, density, first-order scheme 
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Figure 11b. Sod problem, density, ENO second-order scheme 
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Figure llc. Sod problem, density, ENO fourth-order scheme 
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Figure 12a. Sod problem, velocity, first-order scheme 
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Figure 12b. Sod problem, velocity, ENO second-order scheme 
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Section 12.0 

TWO-DIMENSIONAL EXAMPLES 

We now present examples in two spatial dimensions. 

Rotated Square Hat Problem 

The two-dimensional scalar wave equation was solved on a uniform grid (20 x 20) wi th 

the wave speeds equal to unity in both directions. The exact solution corresponds to a 

translating initial data along the diagonal from lower left to upper right corner of the grid. 

Periodic coundar~T conditions were assumed in all four directions. The initial profile was a 

square hat , rotated by 45° ; inside the square region, the dependent variables were assigned 

a value of unity and outside the region it was set to zero. Contour plots are shown for 

10 snapshots at time-intervals of 10 steps in Figure 13. This example demonstrates the 

appropriateness of the 2-d interpolation procedure used. 

Turbulence Amplification in Shock-Wave Interactions 

A preliminary investigation was carried out to evaluate the applicability of the ENO 

formulation presented here to the problem of turbulence amplification in shock-wave in

teractions. The basic physical phenomena were described in Ref. 16 along with numerical 

results using a shock fitting procedure. The goal here was to perform an assessment of 

the feasibility of using shock-capturing schemes instead. The problem selected was the 

refreaction of a vorticity wave striking a Mach 8 shock at a 30 degree angle of incidence 

as illustrated in Fig. 2 of Ref. 16 (except that the incident wave is a vorti city wave rather 

than an acoustic one). 

For the calculations presented in this report , upstream and downstream conditions 

(with respect to the shock wave) were chosen such that the shock wave is stationary. The 

flow velocity on the upstream side (right hand side) of the shock wave is from right to 

left with a Mach number of 8. The flow on the downstream side is subsonic. A vorticity 

perturbation is added to the supersonic side. The perturbation velocity components are 

denoted in Figure 14 as u' and v'. The geometry parameters are defined such that an 

entire period of the perturbation velocity profile fits the region between Ymax and Ymin. 

The upstream flow is held constant for the duration of the computations. The downstream 

flow feels the effect of the vorticity perturbations and over a period of time, these effects 

propagate to the left of the shock wave. A uniform grid in both the coordinate directions 
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was assumed . Periodic boundary conditions were imposed connecting the upper and lower 

boundaries . The flow field was held fixed at the unper turbed subsonic conditions at the left 

boundary. The computational grid used 101 points in the x direction and 61 points in the 

y direction. The upstream values of pressure and density were used as reference conditions 

to nondimensionalize all appropriate quantities . In order to specify the magnitude of 

the vor ticity perturba tion , U re f (see Fig . 14) was chosen to be the upstream velocity's 

m agni tude and the intensity selector E was chosen to be 0.001. 

Three sets of results are now presented in Figs . 15-17. Each set comprizes a ) pressure 

contours in the range 74 .46 to 74.56, b) vorticity contours, and c) vorticity profiles along 

the horizontal direction for every horizontal grid line. Figs. 15a-c display results at a value 

of llonciill!ellsiorlal time, T , of 0.094. Figs. 16a-c are for T = 0.153 and Figs. 17a-c are 

for T = 0.2. The smoothness of the contours in the contour plots demonstrates the utility 

of the ENO shock capturing scheme for this problem. The vorticity contours lie between 

the maximum and minimum values displayed in the figures presenting vorticity profiles. 

T he shock wave location is at x = 0.0. The profiles show the amplification of vorticity 

occurring downstream of the shock wave. 

The results shown in Fig. 17c are redrawn in Fig. 17d in a condensed form. To create 

Fig. 17d, the maximum absolute value of vorticity along each vertical grid line at each x 

location was computed and plotted as a function of x. Based on the harmonic behavior in 

the y direction displayed in Fig. 17c, this approach is a reasonable alternative to computing 

and plotting the Fourier coefficients at each x location. If this plot is compared with Fig. 4 

of Ref. 16, the good agreement between the two results becomes evident. The two results, 

however , use different scaling. The region of non-zero vorticity in both results is clearly 

seen to extend 0.5 units along the axial direction downstream of the shock position. The 

shape of the numerical profile on the downstream side of the shock wave is almost identical. 

The present shock-captured results also show vorticity through the numerical shock layer 

and on the upstream side of the shock wave. The values of vorticity inside the numerical 

shock layer cannot be usefully interpreted. 

In the above computations, the ENO interpolation procedure was applied to the char

acteristic variables and not the conservation variables. The next two sets of figures illus

trate the need for this implementation. These results were obtained using initial conditions 

(upstream and downstream) chosen so that the shock wave is moving to the right with 

Ms = 8.0 (Mach number computed using shock velocity and upstream speed of sound) . 

The perturbations were set to zero. Without the presence of any two-dimensional effects, 
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the same axial profiles were obtained at every vertical location (solution independent of 

y). Figs. 18a, 19a and 20a portray density, pressure and u-velocity profiles when conser

vative variable interpolation is used and Figs. 18b, 19b and 20b illustrate the numerical 

behavior when characteristic variable interpolation is used. The marked low frequency 

oscillations shown in Figs. 18a, 19a, 20a are not unexpected to researchers familiar with 

ENO formulations. The use of characteristic variables greatly reducetl, but not eliminates, 

such undesirable behavior. It is yet to be determined whether such numerical effects may 

be obstacles to the application of shock-capturing ENO schemes, such as the formulation 

presented in this report, to high resolution applications such as turbulence amplification 

in shock-wave interactions when the shocks are moving with respect to the computational 

grid. 

In summary, it has been shown that an appropriately applied ENO shock-capturing 

scheme can be used to study shock-wave turbulence interactions. Some issues related to 

capturing high Mach number moving shock wave have also been raised. This researcher 

is confident that recent advances such as "subcell resolution" techniques (Ref. 14) and 

evolving improvements to and variations of ENO schemes will resolve such problems. It 

must also be repeated here that the above study represents only preliminary work in 

applying a specific type of ENO formulation to shock-wave turbulence interaction problems 

and is therefore not definitive. 
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Section 13.0 

CONCLUDING REMARKS 

The general framework of ENO formulations for systems of hyperbolic equations have 

been presented along with a specific implementation based on reconstruction by primi tive 

function , Runge-Kutta time integration and a tensor-product approach to multidimen

sional problems. Some FORTRAN procedures have been provided to facilitate imple

mentation of ENO schemes by other interested researchers. Several examples have been 

included to illustrate interesting properties of the new algorithms. 

The general framework is very ri ch with potential. ENO schemes can be constructed 

based on the integral form or the differential form of hyperbolic equations. vVe have 

presented the former in this report. Reconstruction can be based on RD , RP or RM. 

We have presented RP here. Multidimensional interpolation possibilities are endless. We 

have presented here a specific method based on a tensor-product approach that is very 

economical and can be used for all problems that need only Cartesian meshes. We have 

presented here the semi-discrete formulation and have used a method-of-lines approach 

by using the fourth-order accurate Runge-Kutta method for advancing the discretized 

equation in time. Other fully discrete approaches are possible. While the basic theme 

presented in this report is "smart interpolation," we have only covered the simplest types 

of implementations. We have only alluded to advances such as "sub cell resolution." 

If we try to set ENO schemes in perspective, the present state of their development 

is similar to where TVD schemes were in 1982. The basic TVD algorithms existed then. 

CFD codes that exploited them came soon thereafter. We are similarly poised with ENO 

schemes now. Time will tell what the real impact of very highly accurate ENO formulations 

will be: whether it will be more efficient computations , more accurate solutions, or being 

able to compute fluid physics problems that were hitherto beyond reach. 

While several individuals contribute to the advancement of the state-of-the-art in any 

field, this researcher would like to identify here a few who have had a great impact on 

the material presented in this report. Bram van Leer was a pioneer in t.he field of up

wind schemes of accuracy greater than first order. He looked at the problem of high-order 

schemes and the role of interpolation from a very elegant intuitive geometric perspective. 

Ami Harten developed the mathematical framework of TVD schemes to put such ideas in 

an analytic framework. Phil Roe and Stan Osher contributed much by providing simpler 

approximate solutions to the Riemann problem. Most of the work of this researcher in 
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recent years has been influenced directly or indirectly by Harten and Osher. Harten ex

tended the TVD ideas to develop the ENO framework and together with Osher and several 

colleagues, including this researcher, has played a key role in developing what promises to 

be the algori thmic framework of the next five years for a wide range of CFD problems. 

63 



--- - -- ---

Section 14.0 

REFERENCES 

[1] S. R. Chakravarthy and S. Osher, "Computing With High-Resolution Upwind Schemes 

for Hyperbolic Equations," Lectures in Applied Mathematics, Volume 22,1985, pp. 57-

86. 

[2] Sukumar R. Chakravarthy, "Development of Upwind Schemes for the Euler Equa

tions," NASA Contractor Report 4043, January 1987. 

[3] S. R. Chakravarthy and K.-Y. Szema, "Euler Solver for Three-Dimensional Supersonic 

Flows with Subsonic Pockets," Journal of Aircraft, Volume 24, Number 2, February 

1987, pp. 73-83. 

[4] K.-Y. Szema, S.R. Chakravarthy, W .T. Riba, J. Byerly, and H.S. Dresser, "Multi

Zone Euler Marching Technique for Flow Over Single and Multi-body Configurations," 

AIAA Paper No. 87-0592, January 1987. 

[5] Kuo-Yen Szema and Sukumar Chakravarthy, "A User Guide for the EMTAC-MZ CFD 

Code", NASA Contractor Report 4283 , 1990. 

[6] A. Harten, "High Resolution Schemes for Hyperbolic Conservation Laws," Journal of 

Computational Physics, Vol. 49, 1983, pp. 357-393. 

[7] S. R. Chakravarthy and S. Osher, "A New Class of High Accuracy TVD Schemes for 

Hyperbolic Conservation Laws," AIAA Paper 85-0363, January 1985. 

[8] S. R. Chakravarthy, "The Versatility and Reliability of Euler Solvers Based on High

Accuracy TVD Formulations," AIAA Paper No. 86-0243, J anuary 1986. 

[9] S.R Chakravarthy, K.-Y. Szema, and J.W. Haney, "Unified Nose-to-Tail Computa

tional Method for Hypersonic Vehicle Applications ," AIAA Paper No. 88-2564, June 

1988. 

64 



j 
\ 

-- ---~ 

[10J A. Harten, "On High-Order Accurate Interpolation for Non-Oscillatory 

Shock-Capturing Schemes," MRC Technical Summary Report No. 2829, June 1985, 

University of Wisconsin, Math matics Research Center. 

[11J A. Harten and S. Osher, "Uniformly High-Order Accurate Non-Oscillatory Schemes, 

I," MRC Technical Summary Report No. 2823, May 1985. 

[12J A. Harten, S. Osher, B. Engquis t, and S. R. Chakravarthy, "Some Results on Uni

formly High-Order Accurate Essentially on-Oscillatory Schemes," Journal of Applied 

Numerical Mathematics, Vol. 2, 1986, pp. 347-377. 

[13J S. R. Chakravarthy, A. Harten, and S. Osher, "Essentially Non-Oscillatory 

Shock-Capturing Schemes of Arbitrarily-High Accuracy," AlA A Paper 86-0339, Jan

uary 1986. 

[14J A. Harten, "ENO Schemes with Sub cell Resolution," ICASE Report 87-56, NASA 

Langley Research Center, August 1987. 

[15J G. A. Sod, "A Survey of Several Finite Difference Methods for Systems of Nonlinear 

Hyperbolic Conservation Laws," Journal of Computational Physics, Vol. 27, 1978, 

pp. 1-31. 

[16J T .A. Zang, M.Y. Hussaini, and D.M. Bushnell , "Numerical Computations of Tur

bulence Amplification in Shock-Wave Interactions," AIAA Journal, Vol. 22, No.1, 

January 1984, pp. 13-21. 

65 



NI\SI\ Report Documentation Page NaI0'\3> .:.,p.,"Y',auIC!. -,,!"1C 
Sc~eo"\crVltSl'al(') 

1. Repon No . I 2. Government Accession No . 3. RecIpIent's Cata log No. 

NASA CR-4285 
I 

4. Title and Subtitle 5. Repon Date 

Some Aspects of Essentially Nonoscillatory (ENO) 
May 1990 Formulations for the Euler Equations 

6. Periorming Organtzation Code 

7. Author(s ) ; 8. Periorming OrganlZatton Repon No . 

Sukumar R. Chakravarthy 
10. Work Unit No. 

505-60-01-02 
9. Periorming Organization Name and Address 

Rockwell International Science Center 11 . Contract or Grant No . 

P. O. Box 1085 NASl-17492 
Thousand Oaks, CA 91360 

13. Type of Repon and Period Covered 

12. Sponsoring Agency Name and Address Contractor Report 
NASA Langley Research Center 

14. Sponsoring ),I.gency Ccae Hampton, VA 23665-5225 

15. Supplementary Notes 

Langley Technical Monitor: David H. Rudy 
Final Report (Part 3) 

16. Abstract 

lrhis report describes an essentially nonoscillatory (ENO) formulation for hyperbolic systems of 
onservation laws. ENO approaches are based on "smart interpolation" to avoid spurious numerical 

pscillations. ENO schemes are a superset of Total Variation Diminishing (TVD) schemes. In the recent 
past, TVD formulations were used to construct shock-capturing finite-difference methods. At extremum 
points of the solution, TVD schemes automatically reduce to being first-order accurate discretizations 
ocany while away from extrema, they can be constructed to be of higher-order accuracy. The new 
ramework helps construct essentially non-oscillatory finite-difference methods without recourse to local 
eductions of accuracy to first order. Thus arbitrarily high orders of accuracy can be obtained. The basic 
eneral ideas of the new approach can be specialized in several ways and this report describes one specific 
mplementation based on a) the integral form of the conservation laws, b) reconstruction based on the 
~rimitive functions, c) extension to multiple dimensions in a tensor product fashion, d) Runge-Kutta time 
ntegration. The resulting method is fourth-order accurate in time and space, and is applicable to uniform 
~artesian grids. The construction of such schemes for scalar equations and systems in one and two space 
~imensions is described along with several examples which illustrate interesting aspects of the new 
pproach. 

17. Key Words ISuggested by Authorls)) lB. Distribution Statement 

Upwind Schemes Unclassified - Unl imited 
Total-Variation-Diminishing Schemes 
Euler equations 

Subject Category 34 

19. Security Classi!. (of this report ) 20. Security Classi!. (of this page) 21 . No. of pages 22. Price 

Unclassified Unclassified 72 A04 

NASA FORM 1626 OCT 86 
For sale by the National Technical Information Service, Springfield. Virginia 22161-2171 NASA·Lant;.te)'. 1990 

I 

l 
1 

l 
I 
~ 
I 




