487 research outputs found

    Halogenation of Imidazolium Ionic Liquids. Thermodynamics Perspective

    Full text link
    Imidazolium cations are promising for anion exchange membranes, and electrochemical applications and gas capture. They can be chemically modified in many ways including halogenation. Halogenation possibilities of the imidazole ring constitute a particular interest. This work investigates fluorination and chlorination reactions of all symmetrically non-equivalent sites of the imidazolium cation. Halogenation of all carbon atoms is thermodynamically permitted. Out of these, the most favorable site is the first methylene group of the alkyl chain. In turn, the least favorable site is carbon of the imidazole ring. Temperature dependence of enthalpy, entropy, and Gibbs free energy at 1 bar is discussed. The reported results provide an important guidance in functionalization of ionic liquids in search of task-specific compounds

    The Atomistic Force Field for Pyridinium-Based Ionic Liquids: Reliable Transport Properties

    Full text link
    Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations

    Structure and Energetics of Graphene Oxide Isomers: Ab Initio Thermodynamic Analysis

    Full text link
    Graphene oxide (GO) holds significant promise for electronic devices and nanocomposite materials. A number of models were proposed for GO structure, combining carboxyl, hydroxyl, carbonyl and epoxide groups at different locations. The complexity and variety of GO isomers, whose thermodynamic stability and formation kinetics depend on applied conditions, make determination of GO structure with atomistic precision challenging. We report high level theoretical investigation of multiple molecular configurations, which are anticipated in GO. We conclude that all oxygen containing groups at the GO surface are thermodynamically permitted, whereas the edge positions are systematically more favorable than the center and side positions. We discuss a potentially novel type of chemical bond or bonding reinforcement in GO, which consists of a covalent bond and a strong electrostatic contribution from a polarized graphene plane. We observe and analyze significant modifications of graphene geometry and electronic structure upon oxidation. The reported thermodynamic data guide experiments aimed at deciphering GO chemical composition and structure, and form the basis for predicting GO properties required for nano-technological applications

    Water Boiling inside Carbon Nanotubes: Towards Efficient Drug Release

    Full text link
    We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNT) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting transition into an unusual phase, where pressure is gas-like and grows linearly with temperature, while the diffusion constant is temperature-independent. Precise control over boiling by CNT diameter, together with the rapid growth of inside pressure above the boiling point, suggests a novel drug delivery protocol. Polar drug molecules are packaged inside CNTs; the latter are delivered into living tissues and heated by laser. Solvent boiling destroys CNT capping agents and releases the drug

    Nitrogen-Nitrogen Bonds Violate Stability of N-Doped Graphene

    Full text link
    Two-dimensional alloys of carbon and nitrogen represent an urgent interest due to prospective applications in nanomechanical and optoelectronic devices. Stability of these chemical structures must be understood as a function of their composition. The present study employs hybrid density functional theory and reactive molecular dynamics simulations to get insights regarding how many nitrogen atoms can be incorporated into the graphene sheet without destroying it. We conclude that (1) C:N=56:28 structure and all nitrogen-poorer structures maintain stability at 1000 K; (2) stability suffers from N-N bonds; (3) distribution of electron density heavily depends on the structural pattern in the N-doped graphene. Our calculations support experimental efforts on the production of highly N-doped graphene and tuning mechanical and optoelectronic properties of graphene

    Are Fluorination and Chlorination of the Morpholinium-Based Ionic Liquids Favorable?

    Full text link
    Room-temperature ionic liquids (RTILs) constitute a fine-tunable class of compounds. Morpholinium-based cations are new to the field. They are promising candidates for electrochemistry, micellization and catalytic applications. We investigate halogenation (fluorination and chlorination) of the N-ethyl-N-methylmorpholinium cation from thermodynamics perspective. We find that substitutional fluorination is much more energetically favorable than substitutional chlorination, although the latter is also a permitted process. Although all halogenation at different locations are possible, they are not equally favorable. Furthermore, the trends are not identical in the case of fluorination and chlorination. We link the thermodynamic observables to electron density distribution within the investigated cation. The reported insights are based on the coupled-cluster technique, which is a highly accurate and reliable electron-correlation method. Novel derivatives of the morpholinium-based RTILs are discussed, motivating further efforts in synthetic chemistry

    Electronic and Thermodynamic Properties of the Amino- and Carboxamido-Functionalized C-60-Based Fullerenes: Towards Non-Volatile Carbon Dioxide Scavengers

    Full text link
    Development of new greenhouse gas scavengers is actively pursued nowadays. Volatility caused solvent consumption and significant regeneration costs associated with the aqueous amine solutions motivate search for more technologically and economically advanced solutions. We hereby used hybrid density functional theory to characterize thermodynamics, structure, electronic and solvation properties of amino and carboxamido functionalized C60 fullerene. C60 is non-volatile and supports a large density of amino groups on its surface. Attachment of polar groups to fullerene C60 adjusts its dipole moment and band gap quite substantially, ultimately resulting in systematically better hydration thermodynamics. Reaction of polyaminofullerenes with CO2 is favored enthalpically, but prohibited entropically at standard conditions. Free energy of the CO2 capture by polyaminofullerenes is non-sensitive to the number of amino groups per fullerene. This result fosters consideration of polyaminofullerenes for CO2 fixation

    Exploding Nitromethane in silico, in real time

    Full text link
    Nitromethane (NM) is widely applied in chemical technology as a solvent for extraction, cleaning and chemical synthesis. NM was considered safe for a long time, until a railroad tanker car exploded in 1958. We investigate detonation kinetics and reaction mechanisms in a variety of systems consisting of NM, molecular oxygen and water vapor. State-of-the-art reactive molecular dynamics allows us to simulate reactions in time-domain, as they occur in real life. High polarity of the NM molecule is shown to play an important role, driving the first exothermic step of the reaction. Presence of oxygen is important for faster oxidation, whereas its optimal concentration is in agreement with the proposed reaction mechanism. Addition of water (50 mol%) inhibits detonation; however, water does not prevent detonation entirely. The reported results provide important insights for improving applications of NM and preserving safety of industrial processes.Comment: arXiv admin note: text overlap with arXiv:1408.372

    A New Model of Chemical Bonding in Ionic Melts

    Full text link
    We developed a new physical model to predict macroscopic properties of inorganic molten systems using a realistic description of inter-atomic interactions. Unlike the conventional approach, which tends to overestimate viscosity by several times, our systems consist of a set of ions with an admixture of neutral atoms. The neutral atom subsystem is a consequence of the covalent/ionic state reduction, occurring in the liquid phase. Comparison of the calculated macroscopic properties (shear viscosity and self-diffusion constants) with the experiment demonstrates good performance of our model. The presented approach is inspired by a significant degree of covalent interaction between the alkali and chlorine atoms, predicted by the coupled cluster theory

    The Scaled-Charge Additive Force Field for Amino Acid Based Ionic Liquids

    Full text link
    Abstract. Ionic liquids (ILs) constitute an emerging field of research. New ILs are continuously introduced involving more and more organic and inorganic ions. Amino acid based ILs (AAILs) represent a specific interest due to their evolutional connection to proteins. We report a new non- polarizable force field (FF) for the eight AAILs comprising 1-ethyl-3-methylimidazolium cation and amino acid anions. The anions were obtained via deprotonation of carboxyl group. Specific cation-anion non-covalent interactions have been taken into account by computing electrostatic potential for ion pairs, in contrast to isolated ions. The van der Waals interactions have been transferred from the CHARMM36 FF with minor modifications. Therefore, compatibility between our parameters and CHARMM36 parameters is preserved. Our FF can be easily implemented using a variety of popular molecular dynamics programs. It will find broad applications in computational investigation of ILs
    • …
    corecore