208 research outputs found

    Magnetic and solar effects on ionospheric absorption at high latitude

    Get PDF
    Some periods of intense solar events and of strong magnetic storms have been selected and their effects on the ionospheric D region have been investigated on the basis of ionospheric absorption data derived from riometer measurements made at the Italian Antarctic Base of Terra Nova Bay (geographic coordinates: 74.69 S, 164.12 E; geomagnetic coordinates: 77.34 S, 279.41 E). It was found that sharp increases in ionospheric absorption are mainly due to solar protons emission with an energy greater than 10 MeV. Moreover, the day to night ratios of the ionospheric absorption are greater than 2 in the case of strong events of energetic protons emitted by the Sun, while during magnetic storms, these ratios range between 1 and 2

    Plasma cells in the carotid plaque: occurrence and significance

    Get PDF
    OBJECTIVE: Atherosclerosis is one of the leading causes of disability and mortality worldwide. Inflammation, including monocytes, T and B cells, plays a key role in its pathogenesis. Our purpose was to evaluate plasma cells’ presence in a large series of carotid artery plaques and the clinical association. PATIENTS AND METHODS: Forty-eight consecutive patients treated with carotid endarterectomy were retrospectively analyzed to assess plasma cells’ presence inside the plaque. A semiquantitative grading score was applied, ranging from absence, scattered, clusters of 5-10, and sheets of >10 plasma cells. Plasma cell’s location, as intraplaque, subendothelial or peri-adventitial, was also defined. RESULTS: In 75% of plaques analyzed, plasma cells were detected: scattered in 63.9%, in clusters in 22.2%, and in sheets in 13.9% of cases. In all cases, plasma cells were observed only inside the plaque. In 13.9% and in 11.1% of cases, plasma cells showed, respectively, a concomitant subendothelial or peri-adventitial distribution. In 5.6% of plaques, there was a simultaneous distribution in subendothelial, peri-adventitial layer, and intraplaque. Association between the presence of symptoms and plasma cells infiltrate was found. CONCLUSIONS: Our results suggest that plasma cells could be a key parameter linked to plaque instability. Some types of configurations are significantly associated with the occurrence of cerebrovascular symptoms

    Helminth communities of herons (Aves: Ardeidae) in southern Italy

    Get PDF
    The helminth communities of nine species of herons from southern Italy were studied and compared. Of 24 taxa found including seven digeneans, seven nematodes, six cestodes and four acanthocephalans, only five taxa were found in more than one heron species, and five of the 21 taxa that could be identified to species level were classified as 'heron specialists'. The total number of helminth species per heron species ranged from 1 in Botaurus stellaris to 9 in Ixobrychus minutus with infection levels generally low. A statistical comparison was carried out for herons with a sample size >. 5. At the infracommunity level, only I. minutus clearly differed from other heron species. Diversity parameters of heminth infracommunities did not significantly differ among heron species. Species richness ranged from just 0.3 to 2.3 helminth taxa per individual host, and the Brillouin index, from 0 to 0.3. Total helminth abundance did not exceed 40 worms per host except in a single case of Ardeola ralloides. Infracommunities clearly were dominated by single helminth species. The present study confirms a depauperate helminth community in herons from southern Italy. Comparison with data from Spain and the Czech Republic showed strong quantitative similarities with values obtained in the present study. Results also suggest that the composition of local helminth communities are strongly variable depending on geographical location as is demonstrated by comparison with data from other European areas. However, whether herons in Europe naturally host depauperate helminth communities or these communities are depauperate because of other factors is unknow

    The human carotid atherosclerotic plaque: an observational review of histological scoring systems

    Get PDF
    OBJECTIVE: The atherosclerotic plaque is a complex dynamic pathological lesion of the arterial wall, characterized by multiple elementary lesions of different diagnostic and prognostic significance. Fibrous cap thickness, lipid necrotic core dimension, inflammation, intra-plaque hemorrhage (IPH), plaque neovascularization and endothelial dysfunction (erosions) are generally considered the most relevant morphological details of plaque morphology. In this review, the most relevant features able to discriminate between stable and vulnerable plaques at histological level are discussed. SUBJECTS AND METHODS: Retrospectively, we have evaluated the laboratory results from one hundred old histological samples from patients treated with carotid endarterectomy. These results were analyzed to assess elementary lesions that characterize stable and unstable plaques. RESULTS: A thin fibrous cap (<65 micron), loss of smooth muscle cells, collagen depletion, a large lipid-rich necrotic core, infiltrating macrophages, IPH and intra-plaque vascularization are identified as the most important risk factors associated with plaque rupture. CONCLUSIONS: Immunohistochemistry for smooth muscle actin (smooth muscle cell marker) and for CD68 (marker of monocytes/macrophages) and glycophorin (marker of red blood cells) are suggested as useful tools for an in deep characterization of any carotid plaque and for distinguishing plaque phenotypes at histology. Since patients with a carotid vulnerable plaque are at higher risk of developing vulnerable plaques in other arteries as well, the definition of the vulnerability index is underlined, in order to stratify patients at higher risk for undergoing cardiovascular events

    Trace elements and the carotid plaque: the GOOD (Mg, Zn, Se), the UGLY (Fe, Cu), and the BAD (P, Ca)?

    Get PDF
    Multiple epidemiological studies have suggested that industrialization and progressive urbanization should be considered one of the main factors responsible for the rising of atherosclerosis in the developing world. In this scenario, the role of trace metals in the insurgence and progression of atherosclerosis has not been clarified yet. In this paper, the specific role of selected trace elements (magnesium, zinc, selenium, iron, copper, phosphorus, and calcium) is described by focusing on the atherosclerotic prevention and pathogenesis plaque. For each element, the following data are reported: daily intake, serum levels, intra/extracellular distribution, major roles in physiology, main effects of high and low levels, specific roles in atherosclerosis, possible interactions with other trace elements, and possible influences on plaque development. For each trace element, the correlations between its levels and clinical severity and outcome of COVID-19 are discussed. Moreover, the role of matrix metalloproteinases, a family of zinc-dependent endopeptidases, as a new medical therapeutical approach to atherosclerosis is discussed.Data suggest that trace element status may influence both atherosclerosis insurgence and plaque evolution toward a stable or an unstable status. However, significant variability in the action of these traces is evident: some - including magnesium, zinc, and selenium - may have a protective role, whereas others, including iron and copper, probably have a multi-faceted and more complex role in the pathogenesis of the atherosclerotic plaque. Finally, calcium and phosphorus are implicated in the calcification of atherosclerotic plaques and in the progression of the plaque toward rupture and severe clinical complications. In particular, the role of calcium is debated. Focusing on the COVID-19 pandemia, optimized magnesium and zinc levels are indicated as important protective tools against a severe clinical course of the disease, often related to the ability of SARS-CoV-2 to cause a systemic inflammatory response, able to transform a stable plaque into an unstable one, with severe clinical complications

    Control of ventricular excitability by neurons of the dorsal motor nucleus of the vagus nerve

    Get PDF
    Background The central nervous origins of functional parasympathetic innervation of cardiac ventricles remain controversial. Objective This study aimed to identify a population of vagal preganglionic neurons that contribute to the control of ventricular excitability. An animal model of synuclein pathology relevant to Parkinson’s disease was used to determine whether age-related loss of the activity of the identified group of neurons is associated with changes in ventricular electrophysiology. Methods In vivo cardiac electrophysiology was performed in anesthetized rats in conditions of selective inhibition of the dorsal vagal motor nucleus (DVMN) neurons by pharmacogenetic approach and in mice with global genetic deletion of all family members of the synuclein protein. Results In rats anesthetized with urethane (in conditions of systemic beta-adrenoceptor blockade), muscarinic and neuronal nitric oxide synthase blockade confirmed the existence of a tonic parasympathetic control of cardiac excitability mediated by the actions of acetylcholine and nitric oxide. Acute DVMN silencing led to shortening of the ventricular effective refractory period (vERP), a lowering of the threshold for triggered ventricular tachycardia, and prolongation of the corrected QT (QTc) interval. Lower resting activity of the DVMN neurons in aging synuclein-deficient mice was found to be associated with vERP shortening and QTc interval prolongation. Conclusion Activity of the DVMN vagal preganglionic neurons is responsible for tonic parasympathetic control of ventricular excitability, likely to be mediated by nitric oxide. These findings provide the first insight into the central nervous substrate that underlies functional parasympathetic innervation of the ventricles and highlight its vulnerability in neurodegenerative diseases

    Correction to: The genetic architecture of Plakophilin 2 cardiomyopathy

    Get PDF
    PURPOSE: The genetic architecture of Plakophilin 2 (PKP2) cardiomyopathy can inform our understanding of its variant pathogenicity and protein function. METHODS: We assess the gene-wide and regional association of truncating and missense variants in PKP2 with arrhythmogenic cardiomyopathy (ACM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) specifically. A discovery data set compares genetic testing requisitions to gnomAD. Validation is performed in a rigorously phenotyped definite ARVC cohort and non-ACM individuals in the Geisinger MyCode cohort. RESULTS: The etiologic fraction (EF) of ACM-related diagnoses from truncating variants in PKP2 is significant (0.85 [0.80,0.88], p < 2 × 10-16), increases for ARVC specifically (EF = 0.96 [0.94,0.97], p < 2 × 10-16), and is highest in definite ARVC versus non-ACM individuals (EF = 1.00 [1.00,1.00], p < 2 × 10-16). Regions of missense variation enriched for ACM probands include known functional domains and the C-terminus, which was not previously known to contain a functional domain. No regional enrichment was identified for truncating variants. CONCLUSION: This multicohort evaluation of the genetic architecture of PKP2 demonstrates the specificity of PKP2 truncating variants for ARVC within the ACM disease spectrum. We identify the PKP2 C-terminus as a potential functional domain and find that truncating variants likely cause disease irrespective of transcript position

    The genetic architecture of Plakophilin 2 cardiomyopathy

    Get PDF
    PURPOSE: The genetic architecture of Plakophilin 2 (PKP2) cardiomyopathy can inform our understanding of its variant pathogenicity and protein function. METHODS: We assess the gene-wide and regional association of truncating and missense variants in PKP2 with arrhythmogenic cardiomyopathy (ACM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) specifically. A discovery data set compares genetic testing requisitions to gnomAD. Validation is performed in a rigorously phenotyped definite ARVC cohort and non-ACM individuals in the Geisinger MyCode cohort. RESULTS: The etiologic fraction (EF) of ACM-related diagnoses from truncating variants in PKP2 is significant (0.85 [0.80,0.88], p < 2 × 10-16), increases for ARVC specifically (EF = 0.96 [0.94,0.97], p < 2 × 10-16), and is highest in definite ARVC versus non-ACM individuals (EF = 1.00 [1.00,1.00], p < 2 × 10-16). Regions of missense variation enriched for ACM probands include known functional domains and the C-terminus, which was not previously known to contain a functional domain. No regional enrichment was identified for truncating variants. CONCLUSION: This multicohort evaluation of the genetic architecture of PKP2 demonstrates the specificity of PKP2 truncating variants for ARVC within the ACM disease spectrum. We identify the PKP2 C-terminus as a potential functional domain and find that truncating variants likely cause disease irrespective of transcript position

    The Sandia Fracture Challenge: blind round robin predictions of ductile tearing

    Get PDF
    Existing and emerging methods in computational mechanics are rarely validated against problems with an unknown outcome. For this reason, Sandia National Laboratories, in partnership with US National Science Foundation and Naval Surface Warfare Center Carderock Division, launched a computational challenge in mid-summer, 2012. Researchers and engineers were invited to predict crack initiation and propagation in a simple but novel geometry fabricated from a common off-the-shelf commercial engineering alloy. The goal of this international Sandia Fracture Challenge was to benchmark the capabilities for the prediction of deformation and damage evolution associated with ductile tearing in structural metals, including physics models, computational methods, and numerical implementations currently available in the computational fracture community. Thirteen teams participated, reporting blind predictions for the outcome of the Challenge. The simulations and experiments were performed independently and kept confidential. The methods for fracture prediction taken by the thirteen teams ranged from very simple engineering calculations to complicated multiscale simulations. The wide variation in modeling results showed a striking lack of consistency across research groups in addressing problems of ductile fracture. While some methods were more successful than others, it is clear that the problem of ductile fracture prediction continues to be challenging. Specific areas of deficiency have been identified through this effort. Also, the effort has underscored the need for additional blind prediction-based assessments
    • …
    corecore