164 research outputs found

    Electronic structure of ferromagnetic semiconductor Ga1-xMnxAs probed by sub-gap magneto-optical spectroscopy

    Get PDF
    We employ Faraday and Kerr effect spectroscopy in the infrared range to investigate the electronic structure of Ga1-xMnxAs near the Fermi energy. The band structure of this archetypical dilute-moment ferromagnetic semiconductor has been a matter of controversy, fueled partly by previous measurements of the unpolarized infrared absorption and their phenomenological impurity-band interpretation. The infrared magneto-optical effects we study arise directly from the spin-splitting of the carrier bands and their chiral asymmetry due to spin-orbit coupling. Unlike the unpolarized absorption, they are intimately related to ferromagnetism and their interpretation is much more microscopically constrained in terms of the orbital character of the relevant band states. We show that the conventional theory of the disordered valence band with dominant As p-orbital character and coupled by kinetic-exchange to Mn local moments accounts semi-quantitatively for the overall characteristics of the measured infrared magneto-optical spectra.Comment: 4 pages 3 figure

    Infrared anomalous Hall effect in SrRuO3_3: Evidence for crossover to intrinsic behavior

    Full text link
    The origin of the Hall effect in many itinerant ferromagnets is still not resolved, with an anomalous contribution from the sample magnetization that can exhibit extrinsic or intrinsic behavior. We report the first mid-infared (MIR) measurements of the complex Hall (θH\theta_H), Faraday (θF\theta_F), and Kerr (θK\theta_K) angles, as well as the Hall conductivity (σxy\sigma_{xy}) in a SrRuO3_3 film in the 115-1400 meV energy range. The magnetic field, temperature, and frequency dependence of the Hall effect is explored. The MIR magneto-optical response shows very strong frequency dependence, including sign changes. Below 200 meV, the MIR θH(T)\theta_H (T) changes sign between 120 and 150 K, as is observed in dc Hall measurements. Above 200 meV, the temperature dependence of θH\theta_H is similar to that of the dc magnetization and the measurements are in good agreement with predictions from a band calculation for the intrinsic anomalous Hall effect (AHE). The temperature and frequency dependence of the measured Hall effect suggests that whereas the behavior above 200 meV is consistent with an intrinsic AHE, the extrinsic AHE plays an important role in the lower energy response.Comment: The resolution of figures is improve

    Systematic study of magnetic linear dichroism and birefringence in (Ga,Mn)As

    Get PDF
    Magnetic linear dichroism and birefringence in (Ga,Mn)As epitaxial layers is investigated by measuring the polarization plane rotation of reflected linearly polarized light when magnetization lies in the plane of the sample. We report on the spectral dependence of the rotation and ellipticity angles in a broad energy range of 0.12-2.7 eV for a series of optimized samples covering a wide range on Mn-dopings and Curie temperatures and find a clear blue shift of the dominant peak at energy exceeding the host material band gap. These results are discussed in the general context of the GaAs host band structure and also within the framework of the k.p and mean-field kinetic-exchange model of the (Ga,Mn)As band structure. We find a semi-quantitative agreement between experiment and theory and discuss the role of disorder-induced non-direct transitions on magneto-optical properties of (Ga,Mn)As.Comment: 18 page

    Optical Conductivity and Hall Coefficient in High-Tc Superconductors: Significant Role of Current Vertex Corrections

    Full text link
    We study AC conductivities in high-Tc cuprates, which offer us significant information to reveal the true electronic ground states. Based on the fluctuation-exchange (FLEX) approximation, current vertex corrections (CVC's) are correctly taken into account to satisfy the conservation laws. We find the significant role of the CVC's on the optical Hall conductivity in the presence of strong antiferromagnetic (AF) fluctuations. This fact leads to the failure of the relaxation time approximation (RTA). As a result, experimental highly unusual behaviors, (i) prominent frequency and temperature dependences of the optical Hall coefficient, and (ii) simple Drude form of the optical Hall andge for wide range of frequencies, are satisfactorily reproduced. In conclusion, both DC and AC transport phenomena in (slightly under-doped) high-Tc cuprates can be explained comprehensively in terms of nearly AF Fermi liquid, if one take the CVC's into account.Comment: 5 page
    corecore