36 research outputs found

    Quasiparticle Effective Mass for the Two- and Three-Dimensional Electron Gas

    Full text link
    We calculate the quasiparticle effective mass for the electron gas in two and three dimensions in the metallic region. We employ the single particle scattering potential coming from the Sj\"{o}lander-Stott theory and enforce the Friedel sum rule by adjusting the effective electron mass in a scattering calculation. In 3D our effective mass is a monotonically decreasing function of rsr_s throughout the whole metallic domain, as implied by the most recent numerical results. In 2D we obtain reasonable agreement with the experimental data, as well as with other calculations based on the Fermi liquid theory. We also present results of a variety of different treatments for the effective mass in 2D and 3D.Comment: 12 pages, 2 figure

    On the Ground State of Electron Gases at Negative Compressibility

    Full text link
    Two- and three-dimensional electron gases with a uniform neutralizing background are studied at negative compressibility. Parametrized expressions for the dielectric function are used to access this strong-coupling regime, where the screened Coulomb potential becomes overall attractive for like charges. Closely examining these expressions reveals that the ground state with a periodic modulation of the charge density, albeit exponentially damped, replaces the homogeneous one at positive compressibility. The wavevector characterizing the new ground state depends on the density and is complex, having a positive imaginary part, as does the homogeneous ground state, and real part, as does the genuine charge density wave.Comment: 6 double-column pages, 2 figures. 2nd version is an extension of the 1st one, giving more detail

    Implication of the overlap representation for modelling generalized parton distributions

    Get PDF
    Based on a field theoretically inspired model of light-cone wave functions, we derive valence-like generalized parton distributions and their double distributions from the wave function overlap in the parton number conserved s-channel. The parton number changing contributions in the t-channel are restored from duality. In our construction constraints of positivity and polynomiality are simultaneously satisfied and it also implies a model dependent relation between generalized parton distributions and transverse momentum dependent parton distribution functions. The model predicts that the t-behavior of resulting hadronic amplitudes depends on the Bjorken variable x_Bj. We also propose an improved ansatz for double distributions that embeds this property.Comment: 15 pages, 8 eps figure

    Ab initio Pseudopotential Plane-wave Calculations of the Electronic Structure of YBa_2Cu_3O_7

    Full text link
    We present an ab initio pseudopotential local density functional calculation for stoichiometric high-Tc cuprate YBa_2Cu_3O_7 using the plane-wave basis set. We have overcome well-known difficulties in applying pseudopotential methods to first-row elements, transition metals, and rare-earth materials by carefully generating norm-conserving pseudopotentials with excellent transferability and employing an extremely efficient iterative diagonalization scheme optimized for our purpose. The self-consistent band structures, the total and site-projected densities of states, the partial charges and their symmetry-decompositions, and some characteristic charge densities near E_f are presented. We compare our results with various existing (F)LAPW and (F)LMTO calculations and establish that the ab initio pseudopotential method is competitive with other methods in studying the electronic structure of such complicated materials as high-Tc cuprates. [8 postscript files in uuencoded compressed form]Comment: 14 pages, RevTeX v3.0, 8 figures (appended in postscript file), SNUTP 94-8

    Core reconstruction in pseudopotential calculations

    Full text link
    A new method is presented for obtaining all-electron results from a pseudopotential calculation. This is achieved by carrying out a localised calculation in the region of an atomic nucleus using the embedding potential method of Inglesfield [J.Phys. C {\bf 14}, 3795 (1981)]. In this method the core region is \emph{reconstructed}, and none of the simplifying approximations (such as spherical symmetry of the charge density/potential or frozen core electrons) that previous solutions to this problem have required are made. The embedding method requires an accurate real space Green function, and an analysis of the errors introduced in constructing this from a set of numerical eigenstates is given. Results are presented for an all-electron reconstruction of bulk aluminium, for both the charge density and the density of states.Comment: 14 pages, 5 figure

    Ferromagnetism in Oriented Graphite Samples

    Full text link
    We have studied the magnetization of various, well characterized samples of highly oriented pyrolitic graphite (HOPG), Kish graphite and natural graphite to investigate the recently reported ferromagnetic-like signal and its possible relation to ferromagnetic impurities. The magnetization results obtained for HOPG samples for applied fields parallel to the graphene layers - to minimize the diamagnetic background - show no correlation with the magnetic impurity concentration. Our overall results suggest an intrinsic origin for the ferromagnetism found in graphite. We discuss possible origins of the ferromagnetic signal.Comment: 11 figure

    Electronic and Structural Properties of a 4d-Perovskite: Cubic Phase of SrZrO3_3

    Get PDF
    First-principles density functional calculations are performed within the local density approximation to study the electronic properties of SrZrO3_3, an insulating 4d-perovskite, in its high-temperature cubic phase, above 1400 K, as well as the generic 3d-perovskite SrTiO3_3, which is also a d^0-insulator and cubic above 105 K, for comparison reasons. The energy bands, density of states and charge density distributions are obtained and a detailed comparison between their band structures is presented. The results are discussed also in terms of the existing data in the literature for both oxides.Comment: 5 pages, 2 figure

    Ab-initio structural, elastic, and vibrational properties of carbon nanotubes

    Full text link
    A study based on ab initio calculations is presented on the estructural, elastic, and vibrational properties of single-wall carbon nanotubes with different radii and chiralities. We use SIESTA, an implementation of pseudopotential-density-functional theory which allows calculations on systems with a large number of atoms per cell. Different quantities like bond distances, Young moduli, Poisson ratio and the frequencies of different phonon branches are monitored versus tube radius. The validity of expectations based on graphite is explored down to small radii, where some deviations appear related to the curvature effects. For the phonon spectra, the results are compared with the predictions of the simple zone-folding approximation. Except for the known defficiencies of this approximation in the low-frequency vibrational regions, it offers quite accurate results, even for relatively small radii.Comment: 13 pages, 7 figures, submitted to Phys. Rev. B (11 Nov. 98

    Paramagnetic structure for the soliton of the 3030^\circ partial dislocation in silicon

    Full text link
    Based on ab initio calculation, we propose a new structure for the fundamental excitation of the reconstructed 30^\circ partial dislocation in silicon. This soliton has a rare structure involving a five-fold coordinated atom near the dislocation core. The unique electronic structure of this defect is consistent with the electron spin resonance signature of the hitherto enigmatic thermally stable R center of plastically deformed silicon. This identification suggests the possibility of an experimental determination of the density of solitons, a key defect in understanding the plastic flow of the material.Comment: 5 pages, 4 figure

    Multi-Particle Collision Dynamics -- a Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids

    Full text link
    In this review, we describe and analyze a mesoscale simulation method for fluid flow, which was introduced by Malevanets and Kapral in 1999, and is now called multi-particle collision dynamics (MPC) or stochastic rotation dynamics (SRD). The method consists of alternating streaming and collision steps in an ensemble of point particles. The multi-particle collisions are performed by grouping particles in collision cells, and mass, momentum, and energy are locally conserved. This simulation technique captures both full hydrodynamic interactions and thermal fluctuations. The first part of the review begins with a description of several widely used MPC algorithms and then discusses important features of the original SRD algorithm and frequently used variations. Two complementary approaches for deriving the hydrodynamic equations and evaluating the transport coefficients are reviewed. It is then shown how MPC algorithms can be generalized to model non-ideal fluids, and binary mixtures with a consolute point. The importance of angular-momentum conservation for systems like phase-separated liquids with different viscosities is discussed. The second part of the review describes a number of recent applications of MPC algorithms to study colloid and polymer dynamics, the behavior of vesicles and cells in hydrodynamic flows, and the dynamics of viscoelastic fluids
    corecore