117 research outputs found

    Absences from work among healthcare workers: are they related to influenza shot adherence?

    Get PDF
    BACKGROUND: The coverage for influenza vaccination among healthcare workers (HCWs) is inadequate in many countries despite strong recommendations; is there evidence that influenza vaccination is effective in preventing absenteeism? Aim of the study is to evaluate the influenza vaccination coverage and its effects on absences from work among HCWs of an Italian academic healthcare trust during the 2017-2018 influenza season. METHODS: We performed a retrospective study to identify predictive characteristics for vaccination, and a retrospective cohort study to establish the effect of vaccination on absences among the vaccinated and non-vaccinated cohorts between December 2017 and May 2018. Overall absence rates over the whole observation period and sub-rates over 14-days intervals were calculated; then comparison between the two groups were conducted applying Chi-square test. RESULTS: Influenza vaccination coverage among 4419 HCWs was 14.5%. Age, university degree, medical care area and physician profile were positively associated with vaccine uptake. Globally during influenza season non-vaccinated HCWs lost 2.47/100 person-days of work compared to 1.92/100 person-days of work among vaccinated HCWs (p\u2009<\u20090.001); significant differences in absences rates resulted when focusing on the influenza epidemic peak. CONCLUSIONS: Factors predicting influenza uptake among HCWs were male sex, working within medical care area and being a physician. Absenteeism among HCWs resulted to be negatively correlated with vaccination against influenza. These findings add evidence to the urgent need to implement better influenza vaccination strategies towards HCWs to tackle vaccine hesitancy among professionals

    Patient safety culture in Italian out-ofhours primary care service: a national cross-sectional survey study

    Get PDF
    Background: Out-of-hours (OOH) services in Italy provide &gt;10 million consultations every year. To the authors' knowledge, no data on patient safety culture (PSC) have been reported. Aim: To assess PSC in the Italian OOH setting. Design &amp; setting: National cross-sectional survey using the Safety Attitudes Questionnaire ā€” Ambulatory Version (SAQ-AV). Method: The SAQ-AV was translated into Italian and distributed in a convenience sample of OOH doctors in 2015. Answers were collected anonymously by Qualtrics. Stata (version 14) was used to estimate Cronbach's alpha, perform exploratory and confirmatory factor analysis, correlate items to doctors' characteristics, and to do item descriptive analysis. Results: Overall, 692 OOH doctors were contacted, with a 71% response rate. In the exploratory factor analysis (EFA), four factors were identified: Communication and Safety Climate (14 items); Perceptions of Management (eight items); Workload and Clinical Risk (six items); and Burnout Risk (four items). These four factors accounted for 68% of the total variance (Kaiser-Meyer-Olkin [KMO] statistic = 0.843). Cronbach's alpha ranged from 0.710-0.917. OOH doctors were often dissatisfied with their job; there is insufficient staff to provide optimal care and there is no training or supervision for new personnel and family medicine trainees. Service managers are perceived as distant, with particular issues concerning the communication between managers and OOH doctors. A large proportion of OOH doctors (56.8%) state that they do not receive adequate support. Conclusion: These findings could be useful for informing policies on how to improve PSC in Italian OOH service

    Finite element modelling of surface defect evolution during hot rolling of Silicon steel

    Get PDF
    Surface defects on metal strips can be generated during hot rolling from surface cavities and indents. The size and aspect ratio of the initial surface cavities present before rolling are critical parameters that determine the final configuration of the defect. The propagation of these defect through the full rolling process is detrimental to the surface quality of the end product, in particular for electrical steel where these type of defects may directly affect the magnetic properties of the final product. A finite element model was developed in the present research to simulate the evolution of surface defects in a high-silicon electrical steel subjected to a single pass hot-rolling operation. The surface defects were modelled as predefined cavities with various aspect ratios and a multi-scale approach was used to capture the large local deformation gradients at the vicinity of the initial cavities. A user-defined subroutine was developed to describe the material constitutive behaviour at different strain rates and temperatures based on the Sellars-Tegart model in ABAQUS/standard finite element package. The modelling results were validated by laboratory scale hot rolling experiments with respect to the measured rolling forces and the plastic deformation of the initial cavities. This study shows that buckling of the lateral sides and bulging of the floor of the initial cavities are the main mechanisms involved in the formation of sub-surface defects. The developed model can be used to predict the evolution of surface cavities and to optimise the rolling parameters in order to minimise the detrimental effect of these defects in the final stages of the hot rolling process

    Atomic-scale structure and properties of highly stable antiphase boundary defects in Fe3O4

    Get PDF
    The complex and intriguing properties of the ferrimagnetic half metal magnetite (Fe3O4) are of continuing fundamental interest as well as being important for practical applications in spintronics, magnetism, catalysis and medicine. There is considerable speculation concerning the role of the ubiquitous antiphase boundary (APB) defects in magnetite, however, direct information on their structure and properties has remained challenging to obtain. Here we combine predictive first principles modelling with high-resolution transmission electron microscopy to unambiguously determine the three-dimensional structure of APBs in magnetite. We demonstrate that APB defects on the {110} planes are unusually stable and induce antiferromagnetic coupling between adjacent domains providing an explanation for the magnetoresistance and reduced spin polarization often observed. We also demonstrate how the high stability of the {110} APB defects is connected to the existence of a metastable bulk phase of Fe3O4, which could be stabilized by strain in films or nanostructures

    Broadband Parametric Amplification in DARTWARS

    Get PDF
    Superconducting parametric amplifiers offer the capability to amplify feeble signals with extremely low levels of added noise, potentially reaching quantum-limited amplification. This characteristic makes them essential components in the realm of high-fidelity quantum computing and serves to propel advancements in the field of quantum sensing. In particular, Traveling-Wave Parametric Amplifiers (TWPAs) may be especially suitable for practical applications due to their multi-Gigahertz amplification bandwidth, a feature lacking in Josephson Parametric Amplifiers (JPAs), despite the latter being a more established technology. This paper presents recent developments of the DARTWARS (Detector Array Readout with Traveling Wave AmplifieRS) project, focusing on the latest prototypes of Kinetic Inductance TWPAs (KITWPAs). The project aims to develop a KITWPA capable of achieving 20 dB of amplification. To enhance the production yield, the first prototypes were fabricated with half the length and expected gain of the final device. In this paper, we present the results of the characterization of one of the half-length prototypes. The measurements revealed an average amplification of approximately 9 dB across a 2 GHz bandwidth for a KITWPA spanning 17 mm in length

    Energy metabolism, altered proteins, sirtuins and ageing: converging mechanisms?

    Get PDF
    The predominant molecular symptom of ageing is the accumulation of altered gene products. Nutritional studies show that ageing in animals can be significantly influenced by dietary restriction. Genetics has revealed that ageing may be controlled by changes in intracellular NAD/NADH ratio regulating sirtuin activity. Physiological and other approaches indicate that mitochondria may also regulate ageing. A mechanism is proposed which links diet, exercise and mitochondria-dependent changes in NAD/NADH ratio to intracellular generation of altered proteins. It is suggested that ad libitum feeding conditions decrease NAD availability which also decreases metabolism of the triose phosphate glycolytic intermediates, glyceraldehyde-3-phosphate and dihydroxyacetone-phosphate, which can spontaneously decompose into methylglyoxal (MG). MG is a highly toxic glycating agent and a major source of protein advanced-glycosylation end-products (AGEs). MG and AGEs can induce mitochondrial dysfunction and formation of reactive oxygen species (ROS), as well as affect gene expression and intracellular signalling. In dietary restrictionā€“induced fasting, NADH would be oxidised and NAD regenerated via mitochondrial action. This would not only activate sirtuins and extend lifespan but also suppress MG formation. This proposal can also explain the apparent paradox whereby increased aerobic activity suppresses formation of glycoxidized proteins and extends lifespan. Variation in mitochondrial DNA composition and consequent mutation rate, arising from dietary-controlled differences in DNA precursor ratios, could also contribute to tissue differences in age-related mitochondrial dysfunction

    Simple model systems: a challenge for Alzheimer's disease

    Get PDF
    The success of biomedical researches has led to improvement in human health and increased life expectancy. An unexpected consequence has been an increase of age-related diseases and, in particular, neurodegenerative diseases. These disorders are generally late onset and exhibit complex pathologies including memory loss, cognitive defects, movement disorders and death. Here, it is described as the use of simple animal models such as worms, fishes, flies, Ascidians and sea urchins, have facilitated the understanding of several biochemical mechanisms underlying Alzheimer's disease (AD), one of the most diffuse neurodegenerative pathologies. The discovery of specific genes and proteins associated with AD, and the development of new technologies for the production of transgenic animals, has helped researchers to overcome the lack of natural models. Moreover, simple model systems of AD have been utilized to obtain key information for evaluating potential therapeutic interventions and for testing efficacy of putative neuroprotective compounds
    • ā€¦
    corecore