24 research outputs found

    Effect of Mixed Oxide-Based TiO2 on the Physicochemical Properties of Chitosan Films

    Get PDF
    The physicochemical, mechanical, and structural properties of chitosan-based films (CS) alone or CS-films with mixed oxide nanoparticles (TiO2-ZnO-MgO, TZM; CSTZM) at different concentrations (125, 250, and 500 μg mL−1) were investigated. The addition of nano-TZM promoted a color change (from colorless to white) in the film-forming solution, which increased its turbidity and it decreased viscosity. CSTZM were semitransparent (transmittance, T% decreased up to 49%) compared to CS-based films (T% = 95.5). CSTZM (particularly at a concentration of 500 μg mL−1) exhibited an improvement in the moisture content (decreased from 12.6 to 9.67%), water solubility (decreased from 14.94 to 10.22%), degree of swelling (increased from 19.79 to 36.28%), water vapor barrier (decreased from 6.62 x 10−16 to 4.33 x 10−16 g m−1 h−1 Pa−1), thermal stability (the endotherm peak increased from 99.5 to 157.7 °C), and mechanical properties (tensile strength and elongation at break increased from 4.15 to 4.98 kPa and 6.96 to 56.18%, respectively, while the modulus of elasticity decreased from 144 kPa to 4.11 kPa), without toxicity effects on Artemia salina (93.33% survival). X-ray diffraction and Fourier transform infrared studies demonstrated an interaction between CS-based films and nano-TZM. Overall, this film exhibited great potential for diverse industrial applications

    Evaluación fisicoquímica y nutricional de un extrudido tipo cereal para desayuno a base de harina de Oxalis tuberosa adicionado con fibra.

    Get PDF
    Actualmente los consumidores buscan alimentos que impacten de manera positiva en su salud, los cuales han sido definidos como alimentos funcionales, algunos ejemplos son: yogurt adicionado con probióticos, galletas y cereales para desayuno adicionados con fibra; los cereales para desayuno juegan un papel importante en la dieta, debido al aporte de nutrientes y los beneficios a la salud que se pueden obtener al consumirlos. Actualmente se investigan materias primas que puedan ser utilizadas como materia prima en la elaboración de ciertos productos. Oxalis tuberosa es un tubérculo, rico en compuestos bioactivos que podría ser utilizado como materia prima en la elaboración de productos procesados. Es por ello que el objetivo del presente trabajo fue incorporar harina de Oxalis tuberosa en un extrudido tipo cereal para desayuno adicionado con fibra de avena, así como analizar las características fisicoquímicas, estructurales y nutricionales de los extrudidos

    Effect of oxidation and crosslinking on functional, rheological and thermal properties of oat and apple starches

    No full text
    Oat (Oa) and apple (Ap) starches were isolated and chemically modified by oxidation with 10% NaOCl to obtain oxidized starches (OOa and OAp), followed by cross-linking with a mixture of 5.6 g of sodium tripolyphosphate and 11 g of sodium trimetaphosphate to obtain doubly modified starches (OCOa and OCAp). In the native and modified starches, the functional properties (swelling power and solubility, and freeze-thaw stability) and thermal and rheological properties (steady-state flow curves and paste formation profile) were evaluated. The swelling power of native and double modified starches varied from 57 to 86 g/g and the solubility from 0.8 to 6.0 g/100 g, these variables increased as the study temperature increased; the increment in these properties was greater in Oa compared to Ap. Oxidation followed by crosslinking increased the freeze-thaw stability in Oa and Ap starches at 30, 60, 75, and 90 °C. It also increased the Tg of OCAp and OCOa ≈ 9% compared to the native samples, respectively; while an inverse pattern was observed in apparent viscosity were this value decreased ≈ 0.8 Pa × s for Oa and ≈ 0.5 Pa × s for Ap compared to the double modified samples. All samples presented a thinning cut-type behavior (pseudoplastic), indicating structural differences. Cross-linking in oxidized starches produced a reinforcing matrix that was determined in the paste formation profile. Dual modification (oxidation-cross-linking) could be an alternative for using starches from underused botanical sources, such as apples and oats, with different functional properties and feasible applications in food systems

    Honeybee health in South America

    Get PDF
    Honeybees are essential components to modern agriculture and economy. However, a continuous increase in cases of colony losses and colony depopulation are being reported worldwide. This critical situation has put the fragile equilibrium between bees and plants on the edge. As a consequence, several scientists have begun to focus their lines of research on this issue. Most researchers agree that there is no single explanation for the observed colony losses. Instead, these losses result from a synergistic interaction between different stressors. South America is not the exception; several cases of colony losses and colony depopulation were reported by beekeepers throughout the continent, yet no accurate data has been published to date. Therefore, this article attempts to analyze the past and present situation of honeybee health in South America, specifically in Argentina, Chile, Uruguay, Brazil, and Venezuela. Furthermore, it is intended to serve as a comparison to future colony losses, as well as to provide guidance for future hypothesis-driven research on the causes of colony mortality. We evaluate the impact of the main parasites and pathogens affecting honeybee colonies and discuss the role of each with respect to reported honeybee losses. We also contemplate the main challenges that each nation must confront with regards to honeybee health.Fil: Maggi, Matías Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Antunez, Karina. Instituto de Investigaciones Biológicas "Clemente Estable"; UruguayFil: Invernizzi, Ciro. Universidad de la República; UruguayFil: Aldea, Patricia. Universidad Mayor. Facultad de Silvoagropecuaría. Centro de Emprendimiento Apícola; ChileFil: Vargas, Marisol. Universidad de Concepción; ChileFil: Negri, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Brasesco, Maria Constanza. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: de Jong, David. Universidade de Sao Paulo; BrasilFil: Message, Dejair. Universidade Federal do Semiárido; BrasilFil: Texeira, Erica Weinstein. Agencia Paulista de Tecnologia dos Agronegocios; BrasilFil: Principal, Judith. Universidad Centroccidental Lisandro Alvarado. Decanato de Ciencias Veterinarias. Estación de Apicultura; VenezuelaFil: Barrios, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Centroccidental Lisandro Alvarado. Decanato de Ciencias Veterinarias. Estación de Apicultura; VenezuelaFil: Ruffinengo, Sergio Roberto. Universidad Nacional de Mar del Plata; ArgentinaFil: Rodríguez Da Silva, Rafael. Universidad Mayor. Facultad de Silvoagropecuaría. Centro de Emprendimiento Apícola; ChileFil: Eguaras, Martin Javier. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentin

    I simposio Internacional sobre Investigación en la enseñanza de las ciencias

    No full text
    Edición 202

    Water table depth modulates productivity and biomass across Amazonian forests

    No full text
    Aim: Water availability is the major driver of tropical forest structure and dynamics. Most research has focused on the impacts of climatic water availability, whereas remarkably little is known about the influence of water table depth and excess soil water on forest processes. Nevertheless, given that plants take up water from the soil, the impacts of climatic water supply on plants are likely to be modulated by soil water conditions. Location: Lowland Amazonian forests. Time period: 1971–2019. Methods: We used 344 long-term inventory plots distributed across Amazonia to analyse the effects of long-term climatic and edaphic water supply on forest functioning. We modelled forest structure and dynamics as a function of climatic, soil-water and edaphic properties. Results: Water supplied by both precipitation and groundwater affects forest structure and dynamics, but in different ways. Forests with a shallow water table (depth <5 m) had 18% less above-ground woody productivity and 23% less biomass stock than forests with a deep water table. Forests in drier climates (maximum cumulative water deficit < −160 mm) had 21% less productivity and 24% less biomass than those in wetter climates. Productivity was affected by the interaction between climatic water deficit and water table depth. On average, in drier climates the forests with a shallow water table had lower productivity than those with a deep water table, with this difference decreasing within wet climates, where lower productivity was confined to a very shallow water table. Main conclusions: We show that the two extremes of water availability (excess and deficit) both reduce productivity in Amazon upland (terra-firme) forests. Biomass and productivity across Amazonia respond not simply to regional climate, but rather to its interaction with water table conditions, exhibiting high local differentiation. Our study disentangles the relative contribution of those factors, helping to improve understanding of the functioning of tropical ecosystems and how they are likely to respond to climate change

    Data and R-code from 'Mode of death and mortality risk factors in Amazon trees'. Nature communications. 2020

    No full text
    The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality rates vary greatly Amazon-wide, on average trees are as likely to die standing as they are broken or uprooted—modes of death with different ecological consequences. Species-level growth rate is the single most important predictor of tree death in Amazonia, with faster-growing species being at higher risk. Within species, however, the slowest-growing trees are at greatest risk while the effect of tree size varies across the basin. In the driest Amazonian region species-level bioclimatic distributional patterns also predict the risk of death, suggesting that these forests are experiencing climatic conditions beyond their adaptative limits. These results provide not only a holistic pan-Amazonian picture of tree death but large-scale evidence for the overarching importance of the growth–survival trade-off in driving tropical tree mortality

    Water table depth modulates productivity and biomass across Amazonian forests

    No full text
    Aim: Water availability is the major driver of tropical forest structure and dynamics. Most research has focused on the impacts of climatic water availability, whereas remarkably little is known about the influence of water table depth and excess soil water on forest processes. Nevertheless, given that plants take up water from the soil, the impacts of climatic water supply on plants are likely to be modulated by soil water conditions. Location: Lowland Amazonian forests. Time period: 1971–2019. Methods: We used 344 long-term inventory plots distributed across Amazonia to analyse the effects of long-term climatic and edaphic water supply on forest functioning. We modelled forest structure and dynamics as a function of climatic, soil-water and edaphic properties. Results: Water supplied by both precipitation and groundwater affects forest structure and dynamics, but in different ways. Forests with a shallow water table (depth <5 m) had 18% less above-ground woody productivity and 23% less biomass stock than forests with a deep water table. Forests in drier climates (maximum cumulative water deficit < −160 mm) had 21% less productivity and 24% less biomass than those in wetter climates. Productivity was affected by the interaction between climatic water deficit and water table depth. On average, in drier climates the forests with a shallow water table had lower productivity than those with a deep water table, with this difference decreasing within wet climates, where lower productivity was confined to a very shallow water table. Main conclusions: We show that the two extremes of water availability (excess and deficit) both reduce productivity in Amazon upland (terra-firme) forests. Biomass and productivity across Amazonia respond not simply to regional climate, but rather to its interaction with water table conditions, exhibiting high local differentiation. Our study disentangles the relative contribution of those factors, helping to improve understanding of the functioning of tropical ecosystems and how they are likely to respond to climate change
    corecore