8 research outputs found

    Ventriculoperitoneal Shunting for Glioblastoma: Risk Factors, Indications, and Efficacy.

    No full text
    BackgroundGlioblastoma patients can develop hydrocephalus, either obstructive, typically at diagnosis as a result of mass effect, or communicating, usually later in the disease.ObjectiveTo characterize the indications and efficacy of ventriculoperitoneal (VP) shunting for patients with glioblastoma-associated hydrocephalus.MethodsRetrospective review was conducted of 841 glioblastoma patients diagnosed from 2004 to 2014, 64 (8%) of whom underwent VP shunting for symptomatic hydrocephalus, to analyze symptoms and outcomes after shunting. Overall survival and postshunt survival were analyzed with Kaplan-Meier methods, with predictors evaluated by use of Cox proportional hazards.ResultsOf the 64 patients who underwent shunting, 42 (66%) had communicating hydrocephalus (CH) and 22 (34%) had obstructive hydrocephalus (OH). CH patients underwent more preshunt craniotomies than those with noncommunicating hydrocephalus, with a mean of 2.3 and 0.7 surgeries, respectively ( P < .001). Ventricular entry during craniotomy occurred in 52% of CH patients vs 59% of those with OH ( P = .8). After shunting, 61% of all patients achieved symptomatic improvement, which was not associated with hydrocephalus variant ( P > .99). Hydrocephalus symptom improvement rates were as follows: headache, 77%; lethargy, 61%; and altered cognition or memory, 54%. Symptomatic improvement was more likely in patients who were younger at shunt placement (hazard ratio, 0.96; P = .045). Symptomatic improvement, shorter time between glioblastoma diagnosis and shunt placement, and CH rather than OH led to improved postshunt survival (hazard ratio = 0.24-0.99; P = .01-.04).ConclusionVP shunting improves symptoms in most glioblastoma patients with suspected CH or OH, specifically younger patients. Symptomatic improvement, shorter duration between glioblastoma diagnosis and shunt placement, and CH rather than OH improve postshunt survival

    GLUT3 upregulation promotes metabolic reprogramming associated with antiangiogenic therapy resistance

    No full text
    Clinical trials revealed limited response duration of glioblastomas to VEGF-neutralizing antibody bevacizumab. Thriving in the devascularized microenvironment occurring after antiangiogenic therapy requires tumor cell adaptation to decreased glucose, with 50% less glucose identified in bevacizumab-treated xenografts. Compared with bevacizumab-responsive xenograft cells, resistant cells exhibited increased glucose uptake, glycolysis, (13)C NMR pyruvate to lactate conversion, and survival in low glucose. Glucose transporter 3 (GLUT3) was upregulated in bevacizumab-resistant versus sensitive xenografts and patient specimens in a HIF-1α–dependent manner. Resistant versus sensitive cell mitochondria in oxidative phosphorylation–selective conditions produced less ATP. Despite unchanged mitochondrial numbers, normoxic resistant cells had lower mitochondrial membrane potential than sensitive cells, confirming poorer mitochondrial health, but avoided the mitochondrial dysfunction of hypoxic sensitive cells. Thin-layer chromatography revealed increased triglycerides in bevacizumab-resistant versus sensitive xenografts, a change driven by mitochondrial stress. A glycogen synthase kinase-3β inhibitor suppressing GLUT3 transcription caused greater cell death in bevacizumab-resistant than -responsive cells. Overexpressing GLUT3 in tumor cells recapitulated bevacizumab-resistant cell features: survival and proliferation in low glucose, increased glycolysis, impaired oxidative phosphorylation, and rapid in vivo proliferation only slowed by bevacizumab to that of untreated bevacizumab-responsive tumors. Targeting GLUT3 or the increased glycolysis reliance in resistant tumors could unlock the potential of antiangiogenic treatments

    Image_1_Antigen-presenting B cells promote TCF-1+ PD1- stem-like CD8+ T-cell proliferation in glioblastoma.jpeg

    No full text
    Understanding the spatial relationship and functional interaction of immune cells in glioblastoma (GBM) is critical for developing new therapeutics that overcome the highly immunosuppressive tumor microenvironment. Our study showed that B and T cells form clusters within the GBM microenvironment within a 15-μm radius, suggesting that B and T cells could form immune synapses within the GBM. However, GBM-infiltrating B cells suppress the activation of CD8+ T cells. To overcome this immunosuppression, we leveraged B-cell functions by activating them with CD40 agonism, IFNγ, and BAFF to generate a potent antigen-presenting B cells named BVax. BVax had improved antigen cross-presentation potential compared to naïve B cells and were primed to use the IL15-IL15Ra mechanism to enhance T cell activation. Compared to naïve B cells, BVax could improve CD8 T cell activation and proliferation. Compared to dendritic cells (DCs), which are the current gold standard professional antigen-presenting cell, BVax promoted highly proliferative T cells in-vitro that had a stem-like memory T cell phenotype characterized by CD62L+CD44- expression, high TCF-1 expression, and low PD-1 and granzyme B expression. Adoptive transfer of BVax-activated CD8+ T cells into tumor-bearing brains led to T cell reactivation with higher TCF-1 expression and elevated granzyme B production compared to DC-activated CD8+ T cells. Adoptive transfer of BVax into an irradiated immunocompetent tumor-bearing host promoted more CD8+ T cell proliferation than adoptive transfer of DCs. Moreover, highly proliferative CD8+ T cells in the BVax group had less PD-1 expression than those highly proliferative CD8+ T cells in the DC group. The findings of this study suggest that BVax and DC could generate distinctive CD8+ T cells, which potentially serve multiple purposes in cellular vaccine development.</p
    corecore