238 research outputs found

    Leadership in Singleton Congestion Games: What is Hard and What is Easy

    Full text link
    We study the problem of computing Stackelberg equilibria Stackelberg games whose underlying structure is in congestion games, focusing on the case where each player can choose a single resource (a.k.a. singleton congestion games) and one of them acts as leader. In particular, we address the cases where the players either have the same action spaces (i.e., the set of resources they can choose is the same for all of them) or different ones, and where their costs are either monotonic functions of the resource congestion or not. We show that, in the case where the players have different action spaces, the cost the leader incurs in a Stackelberg equilibrium cannot be approximated in polynomial time up to within any polynomial factor in the size of the game unless P = NP, independently of the cost functions being monotonic or not. We show that a similar result also holds when the players have nonmonotonic cost functions, even if their action spaces are the same. Differently, we prove that the case with identical action spaces and monotonic cost functions is easy, and propose polynomial-time algorithm for it. We also improve an algorithm for the computation of a socially optimal equilibrium in singleton congestion games with the same action spaces without leadership, and extend it to the computation of a Stackelberg equilibrium for the case where the leader is restricted to pure strategies. For the cases in which the problem of finding an equilibrium is hard, we show how, in the optimistic setting where the followers break ties in favor of the leader, the problem can be formulated via mixed-integer linear programming techniques, which computational experiments show to scale quite well

    Persuading Voters: It's Easy to Whisper, It's Hard to Speak Loud

    Full text link
    We focus on the following natural question: is it possible to influence the outcome of a voting process through the strategic provision of information to voters who update their beliefs rationally? We investigate whether it is computationally tractable to design a signaling scheme maximizing the probability with which the sender's preferred candidate is elected. We focus on the model recently introduced by Arieli and Babichenko (2019) (i.e., without inter-agent externalities), and consider, as explanatory examples, kk-voting rule and plurality voting. There is a sharp contrast between the case in which private signals are allowed and the more restrictive setting in which only public signals are allowed. In the former, we show that an optimal signaling scheme can be computed efficiently both under a kk-voting rule and plurality voting. In establishing these results, we provide two general (i.e., applicable to settings beyond voting) contributions. Specifically, we extend a well known result by Dughmi and Xu (2017) to more general settings, and prove that, when the sender's utility function is anonymous, computing an optimal signaling scheme is fixed parameter tractable w.r.t. the number of receivers' actions. In the public signaling case, we show that the sender's optimal expected return cannot be approximated to within any factor under a kk-voting rule. This negative result easily extends to plurality voting and problems where utility functions are anonymous

    Public Bayesian persuasion: being almost optimal and almost persuasive

    Get PDF
    We study algorithmic Bayesian persuasion problems in which the principal (a.k.a. the sender) has to persuade multiple agents (a.k.a. receivers) by using public communication channels. Specifically, our model follows the multi-receiver model with no inter-agent externalities introduced by Arieli and Babichenko (J Econ Theory 182:185–217, 2019). It is known that the problem of computing a sender-optimal public persuasive signaling scheme is not approximable even in simple settings. Therefore, prior works usually focus on determining restricted classes of the problem for which efficient approximation is possible. Typically, positive results in this space amounts to finding bi-criteria approximation algorithms yielding an almost optimal and almost persuasive solution in polynomial time. In this paper, we take a different perspective and study the persuasion problem in the general setting where the space of the states of nature, the action space of the receivers, and the utility function of the sender can be arbitrary. We fully characterize the computational complexity of computing a bi-criteria approximation of an optimal public signaling scheme in such settings. In particular, we show that, assuming the Exponential Time Hypothesis, solving this problem requires at least a quasi-polynomial number of steps even in instances with simple utility functions and binary action spaces such as an election with the k-voting rule. In doing so, we prove that a relaxed version of the MAXIMUM FEASIBLE SUBSYSTEM OF LINEAR INEQUALITIES problem requires at least quasi-polynomial time to be solved. Finally, we close the gap by providing a quasi-polynomial time bi-criteria approximation algorithm for arbitrary public persuasion problems that, under mild assumptions, yields a QPTAS

    Election Manipulation on Social Networks: Seeding, Edge Removal, Edge Addition

    Full text link
    We focus on the election manipulation problem through social influence, where a manipulator exploits a social network to make her most preferred candidate win an election. Influence is due to information in favor of and/or against one or multiple candidates, sent by seeds and spreading through the network according to the independent cascade model. We provide a comprehensive study of the election control problem, investigating two forms of manipulations: seeding to buy influencers given a social network, and removing or adding edges in the social network given the seeds and the information sent. In particular, we study a wide range of cases distinguishing for the number of candidates or the kind of information spread over the network. Our main result is positive for democracy, and it shows that the election manipulation problem is not affordable in the worst-case except for trivial classes of instances, even when one accepts to approximate the margin of victory. In the case of seeding, we also show that the manipulation is hard even if the graph is a line and that a large class of algorithms, including most of the approaches recently adopted for social-influence problems, fail to compute a bounded approximation even on elementary networks, as undirected graphs with every node having a degree at most two or directed trees. In the case of edge removal or addition, our hardness results also apply to the basic case of social influence maximization/minimization. In contrast, the hardness of election manipulation holds even when the manipulator has an unlimited budget, being allowed to remove or add an arbitrary number of edges.Comment: arXiv admin note: text overlap with arXiv:1902.0377

    Signaling in Bayesian Network Congestion Games: the Subtle Power of Symmetry

    Get PDF
    Network congestion games are a well-understood model of multi-agent strategic interactions. Despite their ubiquitous applications, it is not clear whether it is possible to design information structures to ameliorate the overall experience of the network users. We focus on Bayesian games with atomic players, where network vagaries are modeled via a (random) state of nature which determines the costs incurred by the players. A third-party entity---the sender---can observe the realized state of the network and exploit this additional information to send a signal to each player. A natural question is the following: is it possible for an informed sender to reduce the overall social cost via the strategic provision of information to players who update their beliefs rationally? The paper focuses on the problem of computing optimal ex ante persuasive signaling schemes, showing that symmetry is a crucial property for its solution. Indeed, we show that an optimal ex ante persuasive signaling scheme can be computed in polynomial time when players are symmetric and have affine cost functions. Moreover, the problem becomes NP-hard when players are asymmetric, even in non-Bayesian settings

    Signaling in Posted Price Auctions

    Full text link
    We study single-item single-unit Bayesian posted price auctions, where buyers arrive sequentially and their valuations for the item being sold depend on a random, unknown state of nature. The seller has complete knowledge of the actual state and can send signals to the buyers so as to disclose information about it. For instance, the state of nature may reflect the condition and/or some particular features of the item, which are known to the seller only. The problem faced by the seller is about how to partially disclose information about the state so as to maximize revenue. Unlike classical signaling problems, in this setting, the seller must also correlate the signals being sent to the buyers with some price proposals for them. This introduces additional challenges compared to standard settings. We consider two cases: the one where the seller can only send signals publicly visible to all buyers, and the case in which the seller can privately send a different signal to each buyer. As a first step, we prove that, in both settings, the problem of maximizing the seller's revenue does not admit an FPTAS unless P=NP, even for basic instances with a single buyer. As a result, in the rest of the paper, we focus on designing PTASs. In order to do so, we first introduce a unifying framework encompassing both public and private signaling, whose core result is a decomposition lemma that allows focusing on a finite set of possible buyers' posteriors. This forms the basis on which our PTASs are developed. In particular, in the public signaling setting, our PTAS employs some ad hoc techniques based on linear programming, while our PTAS for the private setting relies on the ellipsoid method to solve an exponentially-sized LP in polynomial time. In the latter case, we need a custom approximate separation oracle, which we implement with a dynamic programming approach

    No-Regret Learning in Bilateral Trade via Global Budget Balance

    Full text link
    Bilateral trade revolves around the challenge of facilitating transactions between two strategic agents -- a seller and a buyer -- both of whom have a private valuations for the item. We study the online version of the problem, in which at each time step a new seller and buyer arrive. The learner's task is to set a price for each agent, without any knowledge about their valuations. The sequence of sellers and buyers is chosen by an oblivious adversary. In this setting, known negative results rule out the possibility of designing algorithms with sublinear regret when the learner has to guarantee budget balance for each iteration. In this paper, we introduce the notion of global budget balance, which requires the agent to be budget balance only over the entire time horizon. By requiring global budget balance, we provide the first no-regret algorithms for bilateral trade with adversarial inputs under various feedback models. First, we show that in the full-feedback model the learner can guarantee O~(T)\tilde{O}(\sqrt{T}) regret against the best fixed prices in hindsight, which is order-wise optimal. Then, in the case of partial feedback models, we provide an algorithm guaranteeing a O~(T3/4)\tilde{O}(T^{3/4}) regret upper bound with one-bit feedback, which we complement with a nearly-matching lower bound. Finally, we investigate how these results vary when measuring regret using an alternative benchmark
    • …
    corecore