162 research outputs found

    Learning to rank from medical imaging data

    Get PDF
    Medical images can be used to predict a clinical score coding for the severity of a disease, a pain level or the complexity of a cognitive task. In all these cases, the predicted variable has a natural order. While a standard classifier discards this information, we would like to take it into account in order to improve prediction performance. A standard linear regression does model such information, however the linearity assumption is likely not be satisfied when predicting from pixel intensities in an image. In this paper we address these modeling challenges with a supervised learning procedure where the model aims to order or rank images. We use a linear model for its robustness in high dimension and its possible interpretation. We show on simulations and two fMRI datasets that this approach is able to predict the correct ordering on pairs of images, yielding higher prediction accuracy than standard regression and multiclass classification techniques

    Cosmological models with linearly varying deceleration parameter

    Full text link
    We propose a new law for the deceleration parameter that varies linearly with time and covers Berman's law where it is constant. Our law not only allows one to generalize many exact solutions that were obtained assuming constant deceleration parameter, but also gives a better fit with data (from SNIa, BAO and CMB), particularly concerning the late time behavior of the universe. According to our law only the spatially closed and flat universes are allowed; in both cases the cosmological fluid we obtain exhibits quintom like behavior and the universe ends with a big-rip. This is a result consistent with recent cosmological observations.Comment: 12 pages, 7 figures; some typo corrections; to appear in International Journal of Theoretical Physic

    A quantum mechanical relation connecting time, temperature, and cosmological constant of the universe: Gamow's relation revisited as a special case

    Get PDF
    Considering our expanding universe as made up of gravitationally interacting particles which describe particles of luminous matter and dark matter and dark energy which is described by a repulsive harmonic potential among the points in the flat 3-space, we derive a quantum mechanical relation connecting, temperature of the cosmic microwave background radiation, age, and cosmological constant of the universe. When the cosmological constant is zero, we get back the Gamow's relation with a much better coefficient. Otherwise, our theory predicts a value of the cosmological constant 2.01056cm22.0 10^{-56} {\rm {cm^{-2}}} when the present values of cosmic microwave background temperature of 2.728 K and age of the universe 14 billion years are taken as input.Comment: 4 pages, 1 figure, Study of the Universe from a condensed matter point of view, section III corrected with a single body potentia

    Beyond brain reading: randomized sparsity and clustering to simultaneously predict and identify

    Get PDF
    International audienceThe prediction of behavioral covariates from functional MRI (fMRI) is known as brain reading. From a statistical standpoint, this challenge is a supervised learning task. The ability to predict cognitive states from new data gives a model selection criterion: prediction accu- racy. While a good prediction score implies that some of the voxels used by the classifier are relevant, one cannot state that these voxels form the brain regions involved in the cognitive task. The best predictive model may have selected by chance non-informative regions, and neglected rele- vant regions that provide duplicate information. In this contribution, we address the support identification problem. The proposed approach relies on randomization techniques which have been proved to be consistent for support recovery. To account for the spatial correlations between voxels, our approach makes use of a spatially constrained hierarchical clustering algorithm. Results are provided on simulations and a visual experiment

    Gravitational Coupling and Dynamical Reduction of The Cosmological Constant

    Full text link
    We introduce a dynamical model to reduce a large cosmological constant to a sufficiently small value. The basic ingredient in this model is a distinction which has been made between the two unit systems used in cosmology and particle physics. We have used a conformal invariant gravitational model to define a particular conformal frame in terms of large scale properties of the universe. It is then argued that the contributions of mass scales in particle physics to the vacuum energy density should be considered in a different conformal frame. In this manner, a decaying mechanism is presented in which the conformal factor appears as a dynamical field and plays a key role to relax a large effective cosmological constant. Moreover, we argue that this model also provides a possible explanation for the coincidence problem.Comment: To appear in GR

    Cosmological Dynamics of Phantom Field

    Get PDF
    We study the general features of the dynamics of the phantom field in the cosmological context. In the case of inverse coshyperbolic potential, we demonstrate that the phantom field can successfully drive the observed current accelerated expansion of the universe with the equation of state parameter wϕ<1w_{\phi} < -1. The de-Sitter universe turns out to be the late time attractor of the model. The main features of the dynamics are independent of the initial conditions and the parameters of the model. The model fits the supernova data very well, allowing for 2.4<wϕ<1-2.4 < w_{\phi} < -1 at 95 % confidence level.Comment: Typos corrected. Some clarifications and references added. To appear in Physical Review

    Constraining the dark energy with galaxy clusters X-ray data

    Full text link
    The equation of state characterizing the dark energy component is constrained by combining Chandra observations of the X-ray luminosity of galaxy clusters with independent measurements of the baryonic matter density and the latest measurements of the Hubble parameter as given by the HST key project. By assuming a spatially flat scenario driven by a "quintessence" component with an equation of state px=ωρxp_x = \omega \rho_x we place the following limits on the cosmological parameters ω\omega and Ωm\Omega_{\rm{m}}: (i) 1ω0.55-1 \leq \omega \leq -0.55 and Ωm=0.320.014+0.027\Omega_{\rm m} = 0.32^{+0.027}_{-0.014} (1σ\sigma) if the equation of state of the dark energy is restricted to the interval 1ω<0-1 \leq \omega < 0 (\emph{usual} quintessence) and (ii) ω=1.290.792+0.686\omega = -1.29^{+0.686}_{-0.792} and Ωm=0.310.034+0.037\Omega_{\rm{m}} = 0.31^{+0.037}_{-0.034} (1σ1\sigma) if ω\omega violates the null energy condition and assume values <1< -1 (\emph{extended} quintessence or ``phantom'' energy). These results are in good agreement with independent studies based on supernovae observations, large-scale structure and the anisotropies of the cosmic background radiation.Comment: 6 pages, 4 figures, LaTe

    Plane-symmetric inhomogeneous magnetized viscous fluid universe with a variable Λ\Lambda

    Full text link
    The behavior of magnetic field in plane symmetric inhomogeneous cosmological models for bulk viscous distribution is investigated. The coefficient of bulk viscosity is assumed to be a power function of mass density (ξ=ξ0ρn)(\xi =\xi_{0}\rho^{n}). The values of cosmological constant for these models are found to be small and positive which are supported by the results from recent supernovae Ia observations. Some physical and geometric aspects of the models are also discussed.Comment: 18 pages, LaTex, no figur

    The Role of Color Neutrality in Nuclear Physics--Modifications of Nucleonic Wave Functions

    Get PDF
    The influence of the nuclear medium upon the internal structure of a composite nucleon is examined. The interaction with the medium is assumed to depend on the relative distances between the quarks in the nucleon consistent with the notion of color neutrality, and to be proportional to the nucleon density. In the resulting description the nucleon in matter is a superposition of the ground state (free nucleon) and radial excitations. The effects of the nuclear medium on the electromagnetic and weak nucleon form factors, and the nucleon structure function are computed using a light-front constituent quark model. Further experimental consequences are examined by considering the electromagnetic nuclear response functions. The effects of color neutrality supply small but significant corrections to predictions of observables.Comment: 37 pages, postscript figures available on request to [email protected]
    corecore