75 research outputs found

    'MRI-negative PET-positive' temporal lobe epilepsy (TLE) and mesial TLE differ with quantitative MRI and PET: a case control study

    Get PDF
    Background: \u27MRI negative PET positive temporal lobe epilepsy\u27 represents a substantial minority of temporal lobe epilepsy (TLE). Clinicopathological and qualitative imaging differences from mesial temporal lobe epilepsy are reported. We aimed to compare TLE with hippocampal sclerosis (HS+ve) and non lesional TLE without HS (HS-ve) on MRI, with respect to quantitative FDG-PET and MRI measures.Methods: 30 consecutive HS-ve patients with well-lateralised EEG were compared with 30 age- and sex-matched HS+ve patients with well-lateralised EEG. Cerebral, cortical lobar and hippocampal volumetric and co-registered FDG-PET metabolic analyses were performed.Results: There was no difference in whole brain, cerebral or cerebral cortical volumes. Both groups showed marginally smaller cerebral volumes ipsilateral to epileptogenic side (HS-ve 0.99, p = 0.02, HS+ve 0.98, p &lt; 0.001). In HS+ve, the ratio of epileptogenic cerebrum to whole brain volume was less (p = 0.02); the ratio of epileptogenic cerebral cortex to whole brain in the HS+ve group approached significance (p = 0.06). Relative volume deficits were seen in HS+ve in insular and temporal lobes. Both groups showed marked ipsilateral hypometabolism (p &lt; 0.001), most marked in temporal cortex. Mean hypointensity was more marked in epileptogenic-to-contralateral hippocampus in HS+ve (ratio: 0.86 vs 0.95, p &lt; 0.001). The mean FDG-PET ratio of ipsilateral to contralateral cerebral cortex however was low in both groups (ratio: HS-ve 0.97, p &lt; 0.0001; HS+ve 0.98, p = 0.003), and more marked in HS-ve across all lobes except insula.Conclusion: Overall, HS+ve patients showed more hippocampal, but also marginally more ipsilateral cerebral and cerebrocortical atrophy, greater ipsilateral hippocampal hypometabolism but similar ipsilateral cerebral cortical hypometabolism, confirming structural and functional differences between these groups.<br /

    Quintura, its singular people and remarkable customs;

    No full text
    Mode of access: Internet

    Cerebral cortex : an MRI-based study of volume and variance with age and sex

    Full text link
    The aim of the present study was to examine quantitative differences in lobar cerebral cortical volumes in a healthy adult population. Quantitative volumetric MRI of whole brain, cerebral and cerebellar volumes was performed in a cross-sectional analysis of 97 normal volunteers, with segmented frontal, temporal, parietal and occipital cortical volumes measured in a subgroup of 60 subjects, 30 male and 30 female, matched for age and sex. The right cerebral hemisphere was larger than the left across the study group with a small (&lt;1%) but significant difference in symmetry (P &lt; 0.001). No difference was found between volumes of right and left cerebellar hemispheres. Rightward cerebral cortical asymmetry (right larger than left) was found to be significant across all lobes except parietal. Males had greater cerebral, cerebellar and cerebral cortical lobar volumes than females. Larger male cerebral cortical volumes were seen in all lobes except for left parietal. Females had greater left parietal to left cerebral hemisphere and smaller left temporal to left cerebral hemisphere ratios. There was a mild reduction in cerebral volumes with age, more marked in males. This study confirms and augments past work indicating underlying structural asymmetries in the human brain, and provides further evidence that brain structures in humans are differentially sensitive to the effects of both age and sex.<br /

    Cognitive impairment and vitamin B12 : a review

    Full text link
    Background: This review examines the associations between low vitamin B12 levels, neurodegenerative disease, and cognitive impairment. The potential impact of comorbidities and medications associated with vitamin B12 derangements were also investigated. In addition, we reviewed the evidence as to whether vitamin B12 therapy is efficacious for cognitive impairment and dementia.Methods: A systematic literature search identified 43 studies investigating the association of vitamin B12 and cognitive impairment or dementia. Seventeen studies reported on the efficacy of vitamin B12 therapy for these conditions.Results: Vitamin B12 levels in the subclinical low-normal range (&lt;250 &rho;mol/L) are associated with Alzheimer\u27s disease, vascular dementia, and Parkinson\u27s disease. Vegetarianism and metformin use contribute to depressed vitamin B12 levels and may independently increase the risk for cognitive impairment. Vitamin B12 deficiency (&lt;150 &rho;mol/L) is associated with cognitive impairment. Vitamin B12 supplements administered orally or parenterally at high dose (1 mg daily) were effective in correcting biochemical deficiency, but improved cognition only in patients with pre-existing vitamin B12 deficiency (serum vitamin B12 levels &lt;150 &rho;mol/L or serum homocysteine levels &gt;19.9 &mu;mol/L).Conclusion: Low serum vitamin B12 levels are associated with neurodegenerative disease and cognitive impairment. There is a small subset of dementias that are reversible with vitamin B12 therapy and this treatment is inexpensive and safe. Vitamin B12 therapy does not improve cognition in patients without pre-existing deficiency. There is a need for large, well-resourced clinical trials to close the gaps in our current understanding of the nature of the associations of vitamin B12 insufficiency and neurodegenerative disease
    corecore