471 research outputs found

    Cosmology as a search for overall equilibrium

    Get PDF
    9 pages, 1 figure.-- The original publication is available at www.springerlink.com.In this letter we will revise the steps followed by A. Einstein when he first wrote on cosmology from the point of view of the general theory of relativity. We will argue that his insightful line of thought leading to the introduction of the cosmological constant in the equations of motion has only one weakness: The constancy of the cosmological term, or what is the same, its independence of the matter content of the universe. Eliminating this feature, I will propose what I see as a simple and reasonable modification of the cosmological equations of motion. The solutions of the new cosmological equations give place to a cosmological model that tries to approach the Einstein static solution. This model shows very appealing features in terms of fitting current observations.Peer reviewe

    Einstein Gravity as an emergent phenomenon?

    Get PDF
    In this essay we marshal evidence suggesting that Einstein gravity may be an emergent phenomenon, one that is not ``fundamental'' but rather is an almost automatic low-energy long-distance consequence of a wide class of theories. Specifically, the emergence of a curved spacetime ``effective Lorentzian geometry'' is a common generic result of linearizing a classical scalar field theory around some non-trivial background. This explains why so many different ``analog models'' of general relativity have recently been developed based on condensed matter physics; there is something more fundamental going on. Upon quantizing the linearized fluctuations around this background geometry, the one-loop effective action is guaranteed to contain a term proportional to the Einstein--Hilbert action of general relativity, suggesting that while classical physics is responsible for generating an ``effective geometry'', quantum physics can be argued to induce an ``effective dynamics''. This physical picture suggests that Einstein gravity is an emergent low-energy long-distance phenomenon that is insensitive to the details of the high-energy short-distance physics.Comment: 8 pages, Essay awarded an honorable mention in the year 2001 Gravity Research Foundation essay competitio

    Some not-so-common ideas about gravity

    Get PDF
    Most of the approaches to the construction of a theory of quantum gravity share some principles which do not have specific experimental support up to date. Two of these principles are relevant for our discussion: (i) the gravitational field should have a quantum description in certain regime, and (ii) any theory of gravity containing general relativity should be relational. We study in general terms the possible implications of assuming deviations from these principles, their compatibility with current experimental knowledge, and how can they affect future experiments.Comment: 12 pages (+ references). Invited talk at DICE2014, Castiglioncello, September 201

    Wormholes in spacetimes with cosmological horizons

    Get PDF
    A generalisation of the asymptotic wormhole boundary condition for the case of spacetimes with a cosmological horizon is proposed. In particular, we consider de Sitter spacetime with small cosmological constant. The wave functions selected by this proposal are exponentially damped in WKB approximation when the scale factor is large but still much smaller than the horizon size. In addition, they only include outgoing gravitational modes in the region beyond the horizon. We argue that these wave functions represent quantum wormholes and compute the local effective interactions induced by them in low-energy field theory. These effective interactions differ from those for flat spacetime in terms that explicitly depend on the cosmological constant.Comment: 10 pages, LaTeX 2.O9, no figure

    Weyl relativity: A novel approach to Weyl's ideas

    Full text link
    In this paper we revisit the motivation and construction of a unified theory of gravity and electromagnetism, following Weyl's insights regarding the appealing potential connection between the gauge invariance of electromagnetism and the conformal invariance of the gravitational field. We highlight that changing the local symmetry group of spacetime permits to construct a theory in which these two symmetries are combined into a putative gauge symmetry but with second-order field equations and non-trivial mass scales, unlike the original higher-order construction by Weyl. We prove that the gravitational field equations are equivalent to the (trace-free) Einstein field equations, ensuring their compatibility with known tests of general relativity. As a corollary, the effective cosmological constant is rendered radiatively stable due to Weyl invariance. A novel phenomenological consequence characteristic of this construction, potentially relevant for cosmological observations, is the existence of an energy scale below which effects associated with the non-integrability of spacetime distances, and an effective mass for the electromagnetic field, appear simultaneously (as dual manifestations of the use of Weyl connections). We explain how former criticisms against Weyl's ideas lose most of their power in its present reincarnation, which we refer to as Weyl relativity, as it represents a Weyl-invariant, unified description of both the Einstein and Maxwell field equations.Comment: 34 pages, no figure
    corecore