11 research outputs found

    A systems ecology view on wastewater treatment sustainability

    No full text

    How to misuse the EIA-tool – a Swedish example

    No full text
    Environmental Impact Assessment (EIA) has its origin in the US National Environmental Policy Act (NEPA), of 1969. The EIA-tool has been widely recognised and was implemented in EC-law in 1985. Sweden was late to introduce EIA and it was not fully implemented in the law until 1998, when the Environmental Code came into effect. If we look at how the EIA-instrument has been used in practice, there are deficiencies from several aspects. One is the requirement to present alternatives to the proposed action, which is considered to be the backbone of EIA. This requirement is often poorly met or even lacking. In this paper, the alternative criterion within EIA is given special attention and is analysed from a Swedish perspective. The emphasis is on how the legal requirements, in relation to the EIA, are met and how the reasoning of the courts goes, in reaching their decision

    A systems ecology view on wastewater treatment sustainability

    No full text

    From environmental problems to sustainable development and towards resilience : Development over time of a university program inenvironmental science aiming for action competences

    No full text
    Introduction:During the latest decades society has developed from an environmental awareness, with reactive thinking, of the “preBrundtland age” into having sustainability as the goal for human development after the Rio declaration. Lately, within the environmentalscientific sphere, the concept of resilience is increasingly superimposed on the sustainability paradigm. It is seen as important both forunderstanding of the present situation as well as a necessity for societies to survive in times of rapid change. During this period from “preBrundtland” until today when resilience is in focus, the environmental science program of Ecotechnology started, developed and changed inresponse to changes in society. A goal, from the very beginning of the educational program, has been to empower students to take action.The types of action and how action competence has been perceived, has changed over the three decades the program has been running. Objectives: Environmental science and sustainability is often difficult to teach since it demands an interdisciplinary approach stretching overthe traditional faculty division of natural, social, and engineering sciences. At Mid Sweden University these three branches have beenintegrated in Ecotechnology education for 30 years. The purpose of this paper is to describe the interdisciplinary teaching with special focuson the development of the student’s action competence for sustainable development, in the light of how the environmental issues havedeveloped. Methods: The paper has a descriptive approach exploring the experiences from the 30 years of interdisciplinary teaching. Results: Different teaching methods and strategies have been employed over time, partly in sync with changing overarching societal goals. Conclusion: Some observations are 1) a key element to develop action competence is to push students to a self-propelled learning behaviorrather than traditional teaching of facts, 2) to not too easily provide the students with answers will develop problem solving skills, 3) “doingbefore-reading” teaching is more time consuming but seem to give deeper knowledge

    Can We Get “Alternatives Analysis Redux” Please?

    No full text

    Methodological considerations from a wastewater treatment case study in Kenya

    No full text
    Emergy methodology questions were raised during a case study where a Sugar factory effluent were treated in a pond system in the Lake Victoria watershed, and evaluated from a performance, cost and resource use perspective. This paper focus on the methodological questions, which were the following: (1) how should the emergy systems diagram be drawn when dealing with a system that is in the recycle loop? Is the wastewater on top in the energy hierarchy (highest transformity) or should the treatment system be located somewhere between the sugar factory on the energy hierarchy top and the dispersed nutrients low down in the energy hierarchy? (2) Rain emergy dominated the local renewable inputs. But how do rain contribute to the wastewater treatment in a pond system, other than as minor dilution? And is evapotranspiration a relevant measure of rain emergy in an aquatic system? (3) Since the case study had a microeconomic focus, is the historical ecosystem work behind lime a relevant item to include from the company's perspective? (4) the wastewater can be considered as a treatment problem, but also as a nutrient and water resource for e.g. irrigation. How does emergy accounting deal with the dualism of a get-rid-of-view and a get-use-of-view? (5) Is the, among some people, controversial maximum empower theory needed for the evaluation of the system, or is the less controversial energy hierarchy theory sufficient for the interpretation? (6) Does the emergy evaluation add any information regarding the sustainability of the pond system

    Ekoteknik (Ecotechnics / Ecotehcnology) – 30 Years of Experience in Interdiciplinery Education

    No full text
    An important part of a society’s resilience is how prepared it is to cope with the changing conditions during the alpha and omega phases according to resilience theory. Lars Thofelt, an academic from the mid Sweden region, early recognized this need for students to develop skills needed for a societal change, and devoted his life to pedagogy suitable for this. The main outcome of his achievement was the interdisciplinary university program in Ecotechnics/Ecotechnology (Ekoteknik in Swedish), at Mid Sweden University. Ecology, economy and technology in cooperation for sustainable development were the original approach, and still are.Thofelt’s ideas had a main focus of helping students develop their inherent capabilities of solving problems and overcome obstacles. After Thofelt’s 12 years at the program his ideas were carried on by former colleagues and students, and the teaching further developed with a mix of the Thofelt tradition and other experiences brought in by new employees. This paper describes this interdisciplinary teaching approach with special focus on development of resilience capacity in students.It was concluded that 1) a key element to develop resilience skills in students is to push them to a self-propelled learning behavior rather than traditional teaching, 2) not too easily provide the students with answers will develop their problem solving skills, 3) doing-before-reading teaching is more time consuming but seem to give deeper knowledge, 4) interdisciplinary teaching will in the long run benefit from having the interdisciplinary team within the department, rather than as a conglomerate of several departments

    INTERDISCIPLINARY COOPERATION AND SYSTEM MODELLING AS MEANS TO GOVERN THE ANTHROPOCENE

    No full text
    The global development has now come to a critical state where humanity act as a new geological force and it is obvious that there are numerous of environmental problems which arise from the present geosphere-biosphere-anthroposphere interactions which urgently need to be addressed. This paper argues that systems analysis and modelling of environmental systems is one necessary part in successful governing of societies towards sustainability. In the 1960th many observations and data made it evident that the environment in most countries was in a bad state. To get a holistic view of the complex problems and to clarify the relationships of structure and function, systems thinking was applied e.g. modelling, cybernetics, systems analysis, life cycle assessment and energy and material flow analysis. Such tools used collectively, conceptualized as 'integrated assessment', can help to communicate fundamental knowledge, and to support decision-making when identifying, developing and implementing precautionary measures and solutions. There are good examples demonstrating the strength of such approaches; Solutions to the ozone depletion by replacing CFC's with more chemically reactive compounds that are degraded within the troposphere. Acidification of European low buffer soils and lakes, sensitive to acid rain, has decreased due to concerted action on Sulphur emission control in large parts of Europe. The handling and recycling of solid waste has resulted in a considerable reduction of deposits in large parts of the world. This basically natural scientific knowledge has also influenced the development within e.g. economy and jurisprudence and today ecological economy and environmental law assume ecological systems as fundamental. The complexity of ecosystems and environmental issues can only be understood by use of advanced scientific tools such as modelling as a base for establishing interdisciplinary co-operation. Each component of such models will of course be an approximation, but validation and verification of the models will serve to make them useful. An ongoing research project at Mid Sweden University aims at building a complete carbon and energy balance model of an entire Swedish region, based on the Danish Samsø-model. Such models will make it possible to refer to a robust scientific base, thereby making it easier to argue for appropriate measures and actions. At the same time it will be clear what data these actions rest upon thereby making it easier to identify possible errors or limitations. Systems analysis and subsequent modes are constructs. According to systems theory and model development they are strategies as the best representations of nature, we can make. At the same time it must be assured, that a continuous adaptation and improvement in a studied area is possible - i.e. that model outcomes are matched with phenomenological observations and that empirical work also is carried out. Model development can therefore be characterized as a dynamic and iterative process. Governance in the Anthropocene must be based on an understanding of the problem picture at hand, and learning how to appropriately address increasingly complex issues. For identifying potential solutions and consequences of policy implementation, systems modelling on relevant levels will be one necessary tool. The current project developing an environmental regional model, illustrates how modelling can provide decision support for the county of Jämtland regarding management of energy resources and planning of future infrastructure, as well as serving regional and national information purposes

    Interdisciplinary Cooperation And System Modelling As Means To Govern The Anthropocene

    No full text
    The global development has now come to a critical state where humanity act as a new geological force and it is obvious that there are numerous of environmental problems which arise from the present geosphere-biosphere-anthroposphere interactions which urgently need to be addressed. This paper argues that systems analysis and modelling of environmental systems is one necessary part in successful governing of societies towards sustainability. In the 1960th many observations and data made it evident that the environment in most countries was in a bad state. To get a holistic view of the complex problems and to clarify the relationships of structure and function, systems thinking was applied e.g. modelling, cybernetics, systems analysis, life cycle assessment and energy and material flow analysis. Such tools used collectively, conceptualized as ‘integrated assessment’, can help to communicate fundamental knowledge, and to support decision-making when identifying, developing and implementing precautionary measures and solutions. There are good examples demonstrating the strength of such approaches; Solutions to the ozone depletion by replacing CFC’s with more chemically reactive compounds that are degraded within the troposphere. Acidification of European low buffer soils and lakes, sensitive to acid rain, has decreased due to concerted action on Sulphur emission control in large parts of Europe. The handling and recycling of solid waste has resulted in a considerable reduction of deposits in large parts of the world. This basically natural scientific knowledge has also influenced the development within e.g. economy and jurisprudence and today ecological economy and environmental law assume ecological systems as fundamental. The complexity of ecosystems and environmental issues can only be understood by use of advanced scientific tools such as modelling as a base for establishing interdisciplinary co-operation. Each component of such models will of course be an approximation, but validation and verification of the models will serve to make them useful. An ongoing research project at Mid Sweden University aims at building a complete carbon and energy balance model of an entire Swedish region, based on the Danish Samsø-model. Such models will make it possible to refer to a robust scientific base, thereby making it easier to argue for appropriate measures and actions. At the same time it will be clear what data these actions rest upon thereby making it easier to identify possible errors or limitations. Systems analysis and subsequent modes are constructs. According to systems theory and model development they are strategies as the best representations of nature, we can make. At the same time it must be assured, that a continuous adaptation and improvement in a studied area is possible - i.e. that model outcomes are matched with phenomenological observations and that empirical work also is carried out. Model development can therefore be characterized as a dynamic and iterative process. Governance in the Anthropocene must be based on an understanding of the problem picture at hand, and learning how to appropriately address increasingly complex issues. For identifying potential solutions and consequences of policy implementation, systems modelling on relevant levels will be one necessary tool. The current project developing an environmental regional model, illustrates how modelling can provide decision support for the county of Jämtland regarding management of energy resources and planning of future infrastructure, as well as serving regional and national information purposes
    corecore