72 research outputs found
A Search for Spectral Hysteresis and Energy-dependent Time Lags from X-Ray and TeV Gamma-Ray Observations of Mrk 421
Abstract
Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three target-of-opportunity observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering the X-ray and optical/ultraviolet bands) and VERITAS (covering the TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi-Large Area Telescope) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e.g., the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at 4 × 10−4 Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies
Investigating the TeV Morphology of MGRO J1908+06 with VERITAS
We report on deep observations of the extended TeV gamma-ray source MGRO
J1908+06 made with the VERITAS very high energy (VHE) gamma-ray observatory.
Previously, the TeV emission has been attributed to the pulsar wind nebula
(PWN) of the Fermi-LAT pulsar PSR J1907+0602. We detect MGRO J1908+06 at a
significance level of 14 standard deviations (14 sigma) and measure a photon
index of 2.20 +/- 0.10_stat +/- 0.20_sys. The TeV emission is extended,
covering the region near PSR J1907+0602 and also extending towards SNR
G40.5--0.5. When fitted with a 2-dimensional Gaussian, the intrinsic extension
has a standard deviation of sigma_src = 0.44 +/- 0.02 degrees. In contrast to
other TeV PWNe of similar age in which the TeV spectrum softens with distance
from the pulsar, the TeV spectrum measured near the pulsar location is
consistent with that measured at a position near the rim of G40.5--0.5, 0.33
degrees away.Comment: To appear in ApJ, 8 page
Discovery of Very High Energy Gamma Rays from 1ES 1440+122
The BL Lacertae object 1ES 1440+122 was observed in the energy range from 85
GeV to 30 TeV by the VERITAS array of imaging atmospheric Cherenkov telescopes.
The observations, taken between 2008 May and 2010 June and totalling 53 hours,
resulted in the discovery of -ray emission from the blazar, which has a
redshift =0.163. 1ES 1440+122 is detected at a statistical significance of
5.5 standard deviations above the background with an integral flux of
(2.8) 10
cm s (1.2\% of the Crab Nebula's flux) above 200 GeV. The
measured spectrum is described well by a power law from 0.2 TeV to 1.3 TeV with
a photon index of 3.1 0.4 0.2.
Quasi-simultaneous multi-wavelength data from the Fermi Large Area Telescope
(0.3--300 GeV) and the Swift X-ray Telescope (0.2--10 keV) are additionally
used to model the properties of the emission region. A synchrotron self-Compton
model produces a good representation of the multi-wavelength data. Adding an
external-Compton or a hadronic component also adequately describes the data.Comment: 8 pages, 4 figures. Accepted for publication in MNRA
A Search for Very High-Energy Gamma Rays from the Missing Link Binary Pulsar J1023+0038 with VERITAS
The binary millisecond radio pulsar PSR J1023+0038 exhibits many
characteristics similar to the gamma-ray binary system PSR B1259--63/LS 2883,
making it an ideal candidate for the study of high-energy non-thermal emission.
It has been the subject of multi-wavelength campaigns following the
disappearance of the pulsed radio emission in 2013 June, which revealed the
appearance of an accretion disk around the neutron star. We present the results
of very high-energy gamma-ray observations carried out by VERITAS before and
after this change of state. Searches for steady and pulsed emission of both
data sets yield no significant gamma-ray signal above 100 GeV, and upper limits
are given for both a steady and pulsed gamma-ray flux. These upper limits are
used to constrain the magnetic field strength in the shock region of the PSR
J1023+0038 system. Assuming that very high-energy gamma rays are produced via
an inverse-Compton mechanism in the shock region, we constrain the shock
magnetic field to be greater than 2 G before the disappearance of the
radio pulsar and greater than 10 G afterwards.Comment: 7 pages, 3 figures, accepted for publication in Ap
VERITAS and Multiwavelength Observations of the BL Lacertae Object 1ES 1741+196
We present results from multiwavelength observations of the BL Lacertae
object 1ES 1741+196, including results in the very-high-energy -ray
regime using the Very Energetic Radiation Imaging Telescope Array System
(VERITAS). The VERITAS time-averaged spectrum, measured above 180 GeV, is
well-modelled by a power law with a spectral index of
. The integral flux above 180
GeV is
m s, corresponding to 1.6% of the Crab Nebula flux on average.
The multiwavelength spectral energy distribution of the source suggests that
1ES 1741+196 is an extreme-high-frequency-peaked BL Lacertae object. The
observations analysed in this paper extend over a period of six years, during
which time no strong flares were observed in any band. This analysis is
therefore one of the few characterizations of a blazar in a non-flaring state.Comment: 8 pages, 5 figures. Accepted for publication in MNRA
Observations of the unidentified gamma-ray source TeV J2032+4130 by VERITAS
TeV J2032+4130 was the first unidentified source discovered at very high
energies (VHE; E 100 GeV), with no obvious counterpart in any other
wavelength. It is also the first extended source to be observed in VHE gamma
rays. Following its discovery, intensive observational campaigns have been
carried out in all wavelengths in order to understand the nature of the object,
which have met with limited success. We report here on a deep observation of
TeV J2032+4130, based on 48.2 hours of data taken from 2009 to 2012 by the
VERITAS (Very Energetic Radiation Imaging Telescope Array System) experiment.
The source is detected at 8.7 standard deviations () and is found to be
extended and asymmetric with a width of 9.51.2 along
the major axis and 4.00.5 along the minor axis. The
spectrum is well described by a differential power law with an index of 2.10
0.14 0.21 and a normalization of (9.5
1.6 2.2) 10TeV cm
s at 1 TeV. We interpret these results in the context of multiwavelength
scenarios which particularly favor the pulsar wind nebula (PWN) interpretation
Very-High-Energy -Ray Observations of the Blazar 1ES 2344+514 with VERITAS
We present very-high-energy -ray observations of the BL Lac object
1ES 2344+514 taken by the Very Energetic Radiation Imaging Telescope Array
System (VERITAS) between 2007 and 2015. 1ES 2344+514 is detected with a
statistical significance above background of in hours
(livetime) of observations, making this the most comprehensive very-high-energy
study of 1ES 2344+514 to date. Using these observations the temporal properties
of 1ES 2344+514 are studied on short and long times scales. We fit a constant
flux model to nightly- and seasonally-binned light curves and apply a
fractional variability test, to determine the stability of the source on
different timescales. We reject the constant-flux model for the 2007-2008 and
2014-2015 nightly-binned light curves and for the long-term seasonally-binned
light curve at the level. The spectra of the time-averaged emission
before and after correction for attenuation by the extragalactic background
light are obtained. The observed time-averaged spectrum above 200 GeV is
satisfactorily fitted () by a power-law function with
index and extends to at least 8
TeV. The extragalactic-background-light-deabsorbed spectrum is adequately fit
() by a power-law function with index while an F-test indicates that the power-law with
exponential cutoff function provides a marginally-better fit ( =
) at the 2.1 level. The source location is found to be
consistent with the published radio location and its spatial extent is
consistent with a point source.Comment: 7 pages, 2 figures. Published in Monthly Notices of the Royal
Astronomical Societ
Gamma-ray Observations Under Bright Moonlight with VERITAS
Imaging atmospheric Cherenkov telescopes (IACTs) are equipped with sensitive
photomultiplier tube (PMT) cameras. Exposure to high levels of background
illumination degrades the efficiency of and potentially destroys these
photo-detectors over time, so IACTs cannot be operated in the same
configuration in the presence of bright moonlight as under dark skies. Since
September 2012, observations have been carried out with the VERITAS IACTs under
bright moonlight (defined as about three times the night-sky-background (NSB)
of a dark extragalactic field, typically occurring when Moon illumination >
35%) in two observing modes, firstly by reducing the voltage applied to the
PMTs and, secondly, with the addition of ultra-violet (UV) bandpass filters to
the cameras. This has allowed observations at up to about 30 times previous NSB
levels (around 80% Moon illumination), resulting in 30% more observing time
between the two modes over the course of a year. These additional observations
have already allowed for the detection of a flare from the 1ES 1727+502 and for
an observing program targeting a measurement of the cosmic-ray positron
fraction. We provide details of these new observing modes and their performance
relative to the standard VERITAS observations
Deep Broadband Observations of the Distant Gamma-ray Blazar PKS 1424+240
We present deep VERITAS observations of the blazar PKS 1424+240, along with
contemporaneous Fermi Large Area Telescope, Swift X-ray Telescope and Swift UV
Optical Telescope data between 2009 February 19 and 2013 June 8. This blazar
resides at a redshift of , displaying a significantly attenuated
gamma-ray flux above 100 GeV due to photon absorption via pair-production with
the extragalactic background light. We present more than 100 hours of VERITAS
observations from three years, a multiwavelength light curve and the
contemporaneous spectral energy distributions. The source shows a higher flux
of (2.1) ph ms above 120 GeV in 2009 and
2011 as compared to the flux measured in 2013, corresponding to
(1.02) ph ms above 120 GeV. The measured
differential very high energy (VHE; GeV) spectral indices are
3.80.3, 4.30.6 and 4.50.2 in 2009, 2011 and 2013,
respectively. No significant spectral change across the observation epochs is
detected. We find no evidence for variability at gamma-ray opacities of greater
than , where it is postulated that any variability would be small and
occur on longer than year timescales if hadronic cosmic-ray interactions with
extragalactic photon fields provide a secondary VHE photon flux. The data
cannot rule out such variability due to low statistics.Comment: ApJL accepted March 17, 201
- …