364 research outputs found

    Gas Geochemistry and Fractionation Processes in Florina Basin, Greece

    Get PDF
    Florina Basin is located in northern Greece, close to Mount Voras where the volcanic activity of Late Messinian age began. In the area, many CO2-rich gas emissions are present as a bubbling free-phase in groundwater (both springs and wells) and soil gases. Volcanism along with the geological and geodynamic regime of the basin, created the ideal conditions for CO2 accumulation in vertically stacked reservoirs. One of these, industrially exploited by the company Air Liquide Greece, produces 30,000 t/a of CO2. Results show that CO2 concentrations in the gases of Florina can arrive up to 99.8% and are mostly above 90%. Moreover, C-isotope composition (-2.1 to + 0.3 h vs. VPDB) indicates a mixed mantle-limestone origin for CO2, while He isotope composition (R/RA from 0.21 to 1.20) shows a prevailing crustal origin with an up to 15% mantle contribution. Helium and methane, with concentrations spanning over three orders of magnitude, show a positive correlation and a consequent high variability of He/CO2 and CH4/CO2 ratios. This variability can be attributed to the interaction of the uprising gases with groundwater that chemically fractionates them due to their different solubility. Based on the CO2, CH4 and He concentrations, gas samples collected in the basin can be divided in 3 groups: a) deep reservoir gases, b) enriched in less soluble gases and c) depleted in less soluble gases. The first group consists of gas samples collected at the Air Liquide extraction wells, which tap a 300m deep reservoir. This group can be considered as the least affected by fractionation processes due to interaction with groundwater. The gases of the second group due to their interaction with shallower unsaturated aquifers, become progressively enriched in less soluble gases (He and CH4). Finally, the third group represents residual gas phases after extensive degassing of the groundwater during its hydrological pathway

    Soil CO2 emissions at Furnas volcano (São Miguel Island, Azores archipelago) - volcano monitoring perspectives, geomorphologic studies and land-use planning application

    Get PDF
    Carbon dioxide (CO2) diffuse degassing structures (DDS) at Furnas Volcano (São Miguel Island, Azores) are mostly associated with the main fumarolic fields, evidence that CO2 soil degassing is the surface expression of rising steam from the hydrothermal system. Locations with anomalous CO2 flux are mainly controlled by tectonic structures oriented WNW-ESE and NW-SE and by the geomorphology of the volcano, as evidenced by several DDS located in depressed areas associated with crater margins. Hydrothermal soil CO2 emissions in Furnas volcano are estimated to be ~ 968 t d-1. Discrimination between biogenic and hydrothermal CO2 was determined using a 1 statistical approach and the carbon isotope composition of the CO2 efflux. Different sampling densities were used to evaluate uncertainty in the estimation of the total CO2 flux, and showed that a low density of points may not be adequate to quantify soil emanations from a relatively small DDS. Thermal energy release associated to diffuse degassing at Furnas caldera is about 118 MW (from an area of ~ 4.8 km2) based on the H2O/CO2 ratio in fumarolic gas. The DDS affect also Furnas and Ribeira Quente villages, which are located inside the caldera and in the south flank of the volcano, respectively. At these sites, 58% and 98% of the houses are built over hydrothermal CO2 emanations, and the populations are at risk due to potential high concentrations of CO2 accumulating inside the dwellings. Keywords: Soil diffuse degassing; soil CO2 flux; emission rates; Azores archipelago

    Weight filtration on the cohomology of complex analytic spaces

    Get PDF
    We extend Deligne's weight filtration to the integer cohomology of complex analytic spaces (endowed with an equivalence class of compactifications). In general, the weight filtration that we obtain is not part of a mixed Hodge structure. Our purely geometric proof is based on cubical descent for resolution of singularities and Poincar\'e-Verdier duality. Using similar techniques, we introduce the singularity filtration on the cohomology of compactificable analytic spaces. This is a new and natural analytic invariant which does not depend on the equivalence class of compactifications and is related to the weight filtration.Comment: examples added + minor correction

    Long Time Series Of Fumarolic Compositions At Volcanoes: The Key To Understand The Activity Of Quiescent Volcanoes

    Get PDF
    Long time series of fumarolic chemical and isotopic compositions at Campi Flegrei, Vulcano, Panarea, Nisyros and Mammoth volcanoes highlight the occurrence of mixing processes among magmatic and hydrothermal fluids. At Campi Flegrei temperatures of about 360°C of the hydrothermal system are inferred by chemical and isotopic geoindicators. These high temperatures are representative of a deep zone where magmatic gases mix with hydrothermal liquids forming the gas plume feeding the fumaroles. Similar mixing processes between magmatic fluids and a hydrothermal component of marine origin have been recognized at Vulcano high temperature fumaroles. In both the system a typical ‘andesitic’ water type composition and high CO2 contents characterizes the magmatic component. Our hypothesis is that pulsing injections of these CO2- rich magmatic fluids at the bottom of the hydrothermal systems trigger the bradyseismic crises, periodically affecting Campi Flegrei, and the periodical volcanic unrest periods of Vulcano. At Campi Flegrei a strong increase of the fraction of the magmatic component marked the bradyseismic crisis (seismicity and ground uplift) of 1982-84 and four minor episodes occurred in 1989, 1994 and 2000 and 2006. Increases of the magmatic component in the fumaroles of Vulcano were recorded in 1979-1981, 1985, 1988, 1996, 2004 and 2005 concurrently with anomalous seismic activity. Physicalnumerical simulations of the injection of hot, CO2 rich fluids at the base of a hydrothermal system, asses the physical feasibility the process. Ground deformations, gravitational anomalies and seismic crisis can be well explained by the complex fluid dynamic processes caused by magma degassing episodes. Sporadic data on the fumaroles of other volcanoes, for example Panarea, Nisyros (Greece), Mammoth (California), suggest that magma degassing episodes frequently occur in dormant volcanoes causing volcanic unrest processes not necessarily linked to magma movement but rather to pulsating degassing processes from deep pressurized, possibly stationary, magma bodies

    Carbon dixide emission in Italy: Shallow crustal sources or subduction related fluid recycling?

    Get PDF
    Anomalous non-volcanic CO2 release in central and southern Italy has been highlighted by ten years of detailed investigations on Earth degassing processes. Two regional degassing structures are located in the Tyrrhenian sector where more then 200 emissions of CO2 are located and has been recently included in the first web based catalogue of degassing sites (http://googas.ov.ingv.it). The total amount of CO2 released by the two structures were evaluated to be > 2×1011 mol a-1 ( >10% of the estimated global volcanic CO2 emission). The anomalous flux of CO2 suddenly disappears in the Apennine in correspondence of a narrow band where most of the Italian seismicity concentrates. Here, at depth, the gas accumulates in crustal traps generating CO2 overpressurised reservoirs. These overpressured structures are, in our opinion, one of the main cause of Apennine earthquake activation processes. The results of these investigations suggested that Earth degassing in Italy may have an active primary role in the geodynamics of the region. What is the origin of gas? The large extension of the degassing structures and petrologic data suggested that the main source of gas is a mantle metasomatised by the fluids produced in the subdacted slabs. However, has been also hypothesised the presence of localised crustal source of the gas. This matter will be discussed on the base of unpublished isotopic data of the main gas emissions

    One year of geochemical monitoring of groundwater in the Abruzzi region after the 2009 earthquakes.

    Get PDF
    The presence of a deep and inorganic source of CO2 has been recently recognized in Italy on the basis of the deeply derived carbon dissolved in the groundwater. In particular, the regional map of CO2 Earth degassing shows that two large degassing structures (Tuscan Roman degassing structure, TRDS, and Campanian degassing structure, CDS) affect the Tyrrhenian side of the Italian peninsula. The comparison between the map of CO2 Earth degassing and of the location of the Italian earthquakes highlights that the anomalous CO2 flux suddenly disappears in the Apennine in correspondence of a narrow band where most of the seismicity concentrates. A previous conceptual model proposed that in this area, at the eastern borders of TRDS and CDS, the CO2 from the mantle wedge intrudes the crust and accumulate in structural traps generating over-pressurized reservoirs. These CO2 over-pressurized levels can play a major role in triggering the Apennine earthquakes. The 2009 Abruzzo earthquakes, like previous seismic crises in the Northern Apennine, occurred at the border of the TRDS, suggesting also in this case a possible role played by deeply derived fluids in the earthquake generation. Detailed hydro-geochemical campaigns, with a monthly frequency, started immediately after the main shock of the 6th of April 2009. The new campaigns include the main springs of the area which were previously studied in detail, during a campaign performed ten years ago, constituting a pre-crisis reference case. Almost one year of geochemical data of the main dissolved ions, of dissolved gases (CO2, CH4, N2, Ar, He) and of the stable isotopes of the water (H, O), CO2 (13C) and He (3He/4He), highlight both that the epicentral area of L’Aquila earthquakes is affected by an important process of CO2 Earth degassing and that that the gases dissolved in the groundwater reflects the input in to the aquifers of a deep gas phase, CO2- rich, with an high He content and with low 3He/4He ratios, similar to the gases emitted by natural manifestations located in the northern Apennines which are fed by deep pressurized reservoirs. Furthermore a systematic increase in the content of the deeply derived CO2 dissolved in the aquifers occurred respect to the July 1997 samples. This increase, followed by a gentle decline of the anomaly, can be compatible with the occurrence of an episode of deep CO2 degassing concurrently with the earthquakes. The origin of this regional variation is under investigation and, at the present moment, an unambiguous interpretation of the data is not possible because the lack of a systematic monitoring of the springs before the seismic events and because eventual seasonal effects on observed variation in CO2 flux are still under investigatio

    Understanding functional group and assembly dynamics in temperature responsive systems leads to design principles for enzyme responsive assemblies

    Get PDF
    Understanding the molecular rules behind the dynamics of supramolecular assemblies is fundamentally important for the rational design of responsive assemblies with tunable properties. Herein, we report that the dynamics of temperature-sensitive supramolecular assemblies is not only affected by the dehydration of oligoethylene glycol (OEG) motifs, but also by the thermally-promoted molecular motions. These counteracting features set up a dynamics transition point (DTP) that can be modulated with subtle variations in a small hydrophobic patch on the hydrophilic face of the amphiphilic assembly. Understanding the structural factors that control the dynamics of the assemblies leads to rational design of enzyme-responsive assemblies with tunable temperature responsive profiles

    A Two-Phase ASP Encoding for Solving Rehabilitation Scheduling

    Get PDF
    The rehabilitation scheduling process consists of planning rehabilitation physiotherapy sessions for patients, by assigning proper operators to them in a certain time slot of a given day, taking into account several requirements and optimizations, e.g., patient’s preferences and operator’s work balancing. Being able to efficiently solve such problem is of upmost importance, in particular after the COVID-19 pandemic that significantly increased rehabilitation’s needs. In this paper, we present a solution to rehabilitation scheduling based on Answer Set Programming (ASP), which proved to be an effective tool for solving practical scheduling problems. Results of experiments performed on both synthetic and real benchmarks, the latter provided by ICS Maugeri, show the effectiveness of our solution

    Long term variations at Campi Flegrei (Italy) volcanic system highlighted by the monitoring of hydrothermal activity

    Get PDF
    Long time-series of chemical composition of fumaroles and of soil CO2 flux reveal that important variations in the activity of Solfatara fumarolic field, the most important hydrothermal site of Campi Flegrei, occurred in the 2000- 2008 period. A continuous increase of the CO2 concentration and a general decrease of the CH4 concentration are interpreted as the consequence of the increment of the relative amount of magmatic fluids, rich in CO2 and poor in CH4, hosted by the hydrothermal system. Contemporaneously the H2O-CO2-He-N2 gas system shows remarkable compositional variations in the samples collected after July 2000 with respect to the previous ones, indicating the progressive arrival at the surface of a magmatic component different from that involved in the 1983-84 bradyseism. The change starts in 2000 concurrently with the occurrence of relatively deep long periods seismic events which, in our interpretation, were the indicator of the opening of an easy pathway for the transfer of magmatic fluids towards the shallower, brittle domain hosting the hydrothermal system. Since 2000 this magmatic gas source is active and causes ground deformations, seismicity as well as the expansion of the area interested by diffuse soil degassing of deeply derived CO2
    • …
    corecore