15 research outputs found

    MERLO: A New Tool and a New Challenge in Mathematics Teaching and Learning

    Get PDF

    A Mission to Mars: Prediction of GCR Doses and Comparison with Astronaut Dose Limits

    Get PDF
    Long-term human space missions such as a future journey to Mars could be characterized by several hazards, among which radiation is one the highest-priority problems for astronaut health. In this work, exploiting a pre-existing interface between the BIANCA biophysical model and the FLUKA Monte Carlo transport code, a study was performed to calculate astronaut absorbed doses and equivalent doses following GCR exposure under different shielding conditions. More specifically, the interface with BIANCA allowed us to calculate both the RBE for cell survival, which is related to non-cancer effects, and that for chromosome aberrations, related to the induction of stochastic effects, including cancer. The results were then compared with cancer and non-cancer astronaut dose limits. Concerning the stochastic effects, the equivalent doses calculated by multiplying the absorbed dose by the RBE for chromosome aberrations (“high-dose method”) were similar to those calculated using the Q-values recommended by ICRP. For a 650-day mission at solar minimum (representative of a possible Mars mission scenario), the obtained values are always lower than the career limit recommended by ICRP (1 Sv), but higher than the limit of 600 mSv recently adopted by NASA. The comparison with the JAXA limits is more complex, since they are age and sex dependent. Concerning the deterministic limits, even for a 650-day mission at solar minimum, the values obtained by multiplying the absorbed dose by the RBE for cell survival are largely below the limits established by the various space agencies. Following this work, BIANCA, interfaced with an MC transport code such as FLUKA, can now predict RBE values for cell death and chromosome aberrations following GCR exposure. More generally, both at solar minimum and at solar maximum, shielding of 10 g/cm2^2 Al seems to be a better choice than 20 g/cm2^2 for astronaut protection against GCR

    Teaching and Assessing with New Methodological Tools (MERLO): A New Pedagogy?

    No full text
    The core element of this paper is an innovative didactical and methodological tool, called MERLO (Meaning Equivalence Reusable Learning Objects) used in formative assessment activities. After a general presentation of the MERLO approach, we will focus on the design process of MERLO items for the teaching and learning of mathematics, especially in secondary schools. The paper presents several methodological choices in the setting up and deployment of the MERLO pedagogy. The data, analysis and results come from the research experience gained at the University of Turin in the context of a master's degree of second level for mathematics teacher educators. This is an ongoing research with a current focus on teachers' professional development, with future perspectives on MERLO implementation in the classroom

    A Mission to Mars: Prediction of GCR Doses and Comparison with Astronaut Dose Limits

    No full text
    Long-term human space missions such as a future journey to Mars could be characterized by several hazards, among which radiation is one the highest-priority problems for astronaut health. In this work, exploiting a pre-existing interface between the BIANCA biophysical model and the FLUKA Monte Carlo transport code, a study was performed to calculate astronaut absorbed doses and equivalent doses following GCR exposure under different shielding conditions. More specifically, the interface with BIANCA allowed us to calculate both the RBE for cell survival, which is related to non-cancer effects, and that for chromosome aberrations, related to the induction of stochastic effects, including cancer. The results were then compared with cancer and non-cancer astronaut dose limits. Concerning the stochastic effects, the equivalent doses calculated by multiplying the absorbed dose by the RBE for chromosome aberrations (“high-dose method”) were similar to those calculated using the Q-values recommended by ICRP. For a 650-day mission at solar minimum (representative of a possible Mars mission scenario), the obtained values are always lower than the career limit recommended by ICRP (1 Sv), but higher than the limit of 600 mSv recently adopted by NASA. The comparison with the JAXA limits is more complex, since they are age and sex dependent. Concerning the deterministic limits, even for a 650-day mission at solar minimum, the values obtained by multiplying the absorbed dose by the RBE for cell survival are largely below the limits established by the various space agencies. Following this work, BIANCA, interfaced with an MC transport code such as FLUKA, can now predict RBE values for cell death and chromosome aberrations following GCR exposure. More generally, both at solar minimum and at solar maximum, shielding of 10 g/cm2 Al seems to be a better choice than 20 g/cm2 for astronaut protection against GCR

    Radiobiological damage by space radiation: extension of the BIANCA model to heavy ions up to iron, and pilot application to cosmic ray exposure

    No full text
    : Space research seems to be object of a renewed interest, also considering that human missions to the Moon, and possibly Mars, are being planned. Among the risks affecting such missions, astronauts' exposure to space radiation is a major concern. In this work, the question of the evaluation of biological damage by Galactic Cosmic Rays (GCR) was addressed by a biophysical model called BIophysical ANalysis of Cell death and chromosome Aberrations (BIANCA), which simulates the induction of cell death and chromosome aberrations by different ions. While previously BIANCA has been validated for calculating cell death along hadrontherapy beams up to oxygen, herein the approach was extended up to Fe ions. Specifically, experimental survival curves available in literature for V79 cells irradiated by Si-, Ne-, Ar- and Fe-ions were reproduced, and a reference radiobiological database describing V79 cell survival as a function of ion type (1 â©˝Zâ©˝ 26), energy and dose was constructed. Analogous databases were generated for Chinese hamster ovary hamster cells and human skin fibroblasts, finding good agreement between simulations and data. Concerning chromosome aberrations, which are regarded as radiation risk biomarkers, dicentric data in human lymphocytes irradiated by heavy ions up to iron were reproduced, and a radiobiological database allowing calculation of lymphocyte dicentric yields as a function of dose, ion type (1 â©˝Zâ©˝ 26) and energy was constructed. Following interface between BIANCA and the FLUKA Monte Carlo transport code, a feasibility study was performed to calculate the relative biological effectiveness (RBE) of different GCR spectrum components, for both dicentrics and cell death. Fe-ions, although representing only 10% of the total absorbed dose, were found to be responsible for about 35%-40% of the RBE-weighted dose. Interestingly, the RBE for dicentrics was higher than that for cell survival. More generally, this work shows that BIANCA can calculate RBE values for cell death and lymphocyte dicentrics not only for ion therapy, but also for space radiation

    Extension of the BIANCA biophysical model up to Fe-ions and applications for space radiation research

    No full text
    BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations) is a biophysical model, implemented as a Monte Carlo code, which simulates the induction of chromosome aberrations and cell death by different monochromatic ion beams (i.e., different ion types and energy values), as well as photons. In previous works, the model predictions for cell survival and lymphocyte dicentrics along therapeutic-like ion beams have been successfully benchmarked against experimental data. With the aim of evaluating the biological damage induced by Galactic Cosmic Rays (GCR), in this study BIANCA was extended up to Fe-ions. A radiobiological database describing human skin fibroblast cell survival and lymphocyte dicentrics as a function of ion type (1≤Z≤26) and energy, as well as dose, was constructed. Afterwards, interfacing BIANCA with the FLUKA Monte Carlo transport code, a feasibility study was performed to calculate the Relative Biological Effectiveness (RBE) of Galactic Cosmic Rays, both for dicentrics and for cell survival; the results were discussed with respect to available space radiation protection limits. Following this work, BIANCA can now provide RBE predictions of cell killing, which can be related to deterministic effects, and lymphocyte dicentrics, more related to stochastic effects, for space radiation exposure
    corecore