12 research outputs found

    Developmental expression of DAX1 in the European sea bass, Dicentrarchus labrax: lack of evidence for sexual dimorphism during sex differentiation

    Get PDF
    DAX1 (NR0B1), a member of the nuclear receptors super family, has been shown to be involved in the genetic sex determination and in gonadal differentiation in several vertebrate species. In the aquaculture fish European sea bass, Dicentrarchus labrax, and in the generality of fish species, the mechanisms of sex determination and differentiation have not been elucidated. The present study aimed at characterizing the European DAX1 gene and its developmental expression at the mRNA level

    Gene structure, transcripts and calciotropic effects of the PTH family of peptides in Xenopus and chicken

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parathyroid hormone (PTH) and PTH-related peptide (PTHrP) belong to a family of endocrine factors that share a highly conserved N-terminal region (amino acids 1-34) and play key roles in calcium homeostasis, bone formation and skeletal development. Recently, PTH-like peptide (PTH-L) was identified in teleost fish raising questions about the evolution of these proteins. Although PTH and PTHrP have been intensively studied in mammals their function in other vertebrates is poorly documented. Amphibians and birds occupy unique phylogenetic positions, the former at the transition of aquatic to terrestrial life and the latter at the transition to homeothermy. Moreover, both organisms have characteristics indicative of a complex system in calcium regulation. This study investigated PTH family evolution in vertebrates with special emphasis on <it>Xenopus </it>and chicken.</p> <p>Results</p> <p>The PTH-L gene is present throughout the vertebrates with the exception of placental mammals. Gene structure of PTH and PTH-L seems to be conserved in vertebrates while PTHrP gene structure is divergent and has acquired new exons and alternative promoters. Splice variants of PTHrP and PTH-L are common in <it>Xenopus </it>and chicken and transcripts of the former have a widespread tissue distribution, although PTH-L is more restricted. PTH is widely expressed in fish tissue but from <it>Xenopus </it>to mammals becomes largely restricted to the parathyroid gland. The N-terminal (1-34) region of PTH, PTHrP and PTH-L in <it>Xenopus </it>and chicken share high sequence conservation and the capacity to modify calcium fluxes across epithelia suggesting a conserved role in calcium metabolism possibly via similar receptors.</p> <p>Conclusions</p> <p>The parathyroid hormone family contains 3 principal members, PTH, PTHrP and the recently identified PTH-L. In teleosts there are 5 genes which encode PTHrP (2), PTH (2) and PTH-L and in tetrapods there are 3 genes (PTHrP, PTH and PTH-L), the exception is placental mammals which have 2 genes and lack PTH-L. It is hypothesized that genes of the PTH family appeared at approximately the same time during the vertebrate radiation and evolved via gene duplication/deletion events. PTH-L was lost from the genome of eutherian mammals and PTH, which has a paracrine distribution in lower vertebrates, became the product of a specific endocrine tissue in Amphibia, the parathyroid gland. The PTHrP gene organisation diverged and became more complex in vertebrates and retained its widespread tissue distribution which is congruent with its paracrine nature.</p

    ICI 182,780 has agonistic effects and synergizes with estradiol-17 beta in fish liver, but not in testis

    Get PDF
    BACKGROUND: ICI 182,780 (ICI) belongs to a new class of antiestrogens developed to be pure estrogen antagonists and, in addition to its therapeutic use, it has been used to knock-out estrogen and estrogen receptor (ER) actions in several mammalian species. In the present study, the effects and mechanism of action of ICI were investigated in the teleost fish, sea bream (Sparus auratus). METHODS: Three independent in vivo experiments were performed in which mature male tilapia (Oreochromis mossambicus) or sea bream received intra-peritoneal implants containing estradiol-17 beta (E2), ICI or a combination of both compounds. The effects of E2 and ICI on plasma calcium levels were measured and hepatic and testicular gene expression of the three ER subtypes, ER alpha, ER beta a and ER beta b, and the estrogen-responsive genes, vitellogenin II and choriogenin L, were analyzed by semi-quantitative RT-PCR in sea bream. RESULTS: E2 treatment caused an increase in calcium levels in tilapia, while ICI alone had no noticeable effect, as expected. However, pretreatment with ICI synergistically potentiated the effect of E2 on plasma calcium in both species. ICI mimicked some E2 actions in gene expression in sea bream liver upregulating ER alpha, vitellogenin II and choriogenin L, although, unlike E2, it did not downregulate ER beta a and ER beta b. In contrast, no effects of E2 or ICI alone were detected in the expression of ERs in testis, while vitellogenin II and choriogenin L were upregulated by E2 but not ICI. Finally, pretreatment with ICI had a synergistic effect on the hepatic E2 down-regulation of ER beta b, but apparently blocked the ER alpha up-regulation by E2. CONCLUSION: These results demonstrate that ICI has agonistic effects on several typical estrogenic responses in fish, but its actions are tissue-specific. The mechanisms for the ICI agonistic activity are still unknown; although the ICI induced up-regulation of ER alpha mRNA could be one of the factors contributing to the cellular response

    Changes in the gene expression profiles of the brains of male European eels (Anguilla anguilla) during sexual maturation

    Get PDF
    Background: The vertebrate brain plays a critical role in the regulation of sexual maturation and reproduction by integrating environmental information with developmental and endocrine status. The European eel Anguilla anguilla is an important species in which to better understand the neuroendocrine factors that control reproduction because it is an endangered species, has a complex life cycle that includes two extreme long distance migrations with both freshwater and seawater stages and because it occupies a key position within the teleost phylogeny. At present, mature eels have never been caught in the wild and little is known about most aspects of reproduction in A. anguilla. The goal of this study was to identify genes that may be involved in sexual maturation in experimentally matured eels. For this, we used microarrays to compare the gene expression profiles of sexually mature to immature males. Results: Using a false discovery rate of 0.05, a total of 1,497 differentially expressed genes were identified. Of this set, 991 were expressed at higher levels in brains (forebrain and midbrain) of mature males while 506 were expressed at lower levels relative to brains of immature males. The set of up-regulated genes includes genes involved in neuroendocrine processes, cell-cell signaling, neurogenesis and development. Interestingly, while genes involved in immune system function were down-regulated in the brains of mature males, changes in the expression levels of several receptors and channels were observed suggesting that some rewiring is occurring in the brain at sexual maturity. Conclusions: This study shows that the brains of eels undergo major changes at the molecular level at sexual maturity that may include re-organization at the cellular level. Here, we have defined a set of genes that help to understand the molecular mechanisms controlling reproduction in eels. Some of these genes have previously described functions while many others have roles that have yet to be characterized in a reproductive context. Since most of the genes examined here have orthologs in other vertebrates, the results of this study will contribute to the body of knowledge concerning reproduction in vertebrates as well as to an improved understanding of eel biology.Peer Reviewe

    Male urine signals social rank in the Mozambique tilapia (Oreochromis mossambicus)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The urine of freshwater fish species investigated so far acts as a vehicle for reproductive pheromones affecting the behaviour and physiology of the opposite sex. However, the role of urinary pheromones in intra-sexual competition has received less attention. This is particularly relevant in lek-breeding species, such as the Mozambique tilapia (<it>Oreochromis mossambicus</it>), where males establish dominance hierarchies and there is the possibility for chemical communication in the modulation of aggression among males. To investigate whether males use urine during aggressive interactions, we measured urination frequency of dye-injected males during paired interactions between size-matched males. Furthermore, we assessed urinary volume stored in the bladder of males in a stable social hierarchy and the olfactory potency of their urine by recording of the electro-olfactogram.</p> <p>Results</p> <p>Males released urine in pulses of short duration (about one second) and markedly increased urination frequency during aggressive behaviour, but did not release urine whilst submissive. In the stable hierarchy, subordinate males stored less urine than males of higher social rank; the olfactory potency of the urine was positively correlated with the rank of the male donor.</p> <p>Conclusion</p> <p>Dominant males store urine and use it as a vehicle for odorants actively released during aggressive disputes. The olfactory potency of the urine is positively correlated with the social status of the male. We suggest that males actively advertise their dominant status through urinary odorants which may act as a 'dominance' pheromone to modulate aggression in rivals, thereby contributing to social stability within the lek.</p

    Developmental expression of DAX1 in the European sea bass, Dicentrarchus labrax: lack of evidence for sexual dimorphism during sex differentiation

    No full text
    Abstract Background DAX1 (NR0B1), a member of the nuclear receptors super family, has been shown to be involved in the genetic sex determination and in gonadal differentiation in several vertebrate species. In the aquaculture fish European sea bass, Dicentrarchus labrax, and in the generality of fish species, the mechanisms of sex determination and differentiation have not been elucidated. The present study aimed at characterizing the European DAX1 gene and its developmental expression at the mRNA level. Methods A full length European sea bass DAX1 cDNA (sbDAX1) was isolated by screening a testis cDNA library. The structure of the DAX1 gene was determined by PCR and Southern blot. Multisequence alignments and phylogenetic analysis were used to compare the translated sbDAX1 product to that of other vertebrates. sbDAX1 expression was analysed by Northern blot and relative RT-PCR in adult tissues. Developmental expression of mRNA levels was analysed in groups of larvae grown either at 15°C or 20°C (masculinising temperature) during the first 60 days, or two groups of fish selected for fast (mostly females) and slow growth. Results The sbDAX1 is expressed as a single transcript in testis and ovary encoding a predicted protein of 301 amino acids. A polyglutamine stretch of variable length in different DAX1 proteins is present in the DNA binding domain. The sbDAX1 gene is composed of two exons, separated by a single 283 bp intron with conserved splice sites in same region of the ligand binding domain as other DAX1 genes. sbDAX1 mRNA is not restricted to the brain-pituitary-gonadal axis and is also detected in the gut, heart, gills, muscle and kidney. sbDAX1 mRNA was detected as early as 4 days post hatching (dph) and expression was not affected by incubation temperature. Throughout gonadal sex differentiation (60–300 dph) no dimorphic pattern of expression was observed. Conclusion The sbDAX1 gene and putative protein coding region is highly conserved and has a wide pattern of tissue expression. Although gene expression data suggests sbDAX1 to be important for the development and differentiation of the gonads, it is apparently not sex specific.</p

    Variation (median and upper and lower quartile values) of cortisol responses to restraining stress in anthias individuals with and without access to cleaner wrasses

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Do cleaning organisms reduce the stress response of client reef fish?"</p><p>http://www.frontiersinzoology.com/content/4/1/21</p><p>Frontiers in Zoology 2007;4():21-21.</p><p>Published online 18 Oct 2007</p><p>PMCID:PMC2134928.</p><p></p> 2a: matched pair design, 14 individuals measured twice, once with access to a cleaner wrasse, once without access to a cleaner wrasse. 2b) independent samples of individuals living at the same reef patch, first group caught while a cleaner wrasse was present, second group caught 14 days after cleaner fish removal
    corecore