2,656 research outputs found

    Modelling ripples in Orion with coupled dust dynamics and radiative transfer

    Get PDF
    In light of the recent detection of direct evidence for the formation of Kelvin-Helmholtz instabilities in the Orion nebula, we expand upon previous modelling efforts by numerically simulating the shear-flow driven gas and dust dynamics in locations where the HII_{II} region and the molecular cloud interact. We aim to directly confront the simulation results with the infrared observations. Methods: To numerically model the onset and full nonlinear development of the Kelvin-Helmholtz instability we take the setup proposed to interpret the observations, and adjust it to a full 3D hydrodynamical simulation that includes the dynamics of gas as well as dust. A dust grain distribution with sizes between 5-250 nm is used, exploiting the gas+dust module of the MPI-AMRVAC code, in which the dust species are represented by several pressureless dust fluids. The evolution of the model is followed well into the nonlinear phase. The output of these simulations is then used as input for the SKIRT dust radiative transfer code to obtain infrared images at several stages of the evolution, which can be compared to the observations. Results: We confirm that a 3D Kelvin-Helmholtz instability is able to develop in the proposed setup, and that the formation of the instability is not inhibited by the addition of dust. Kelvin-Helmholtz billows form at the end of the linear phase, and synthetic observations of the billows show striking similarities to the infrared observations. It is pointed out that the high density dust regions preferentially collect on the flanks of the billows. To get agreement with the observed Kelvin-Helmholtz ripples, the assumed geometry between the background radiation, the billows and the observer is seen to be of critical importance.Comment: 8 pages, 10 figure

    Hierarchical octree and k-d tree grids for 3D radiative transfer simulations

    Get PDF
    A crucial ingredient for numerically solving the 3D radiative transfer problem is the choice of the grid that discretizes the transfer medium. Many modern radiative transfer codes, whether using Monte Carlo or ray tracing techniques, are equipped with hierarchical octree-based grids to accommodate a wide dynamic range in densities. We critically investigate two different aspects of octree grids in the framework of Monte Carlo dust radiative transfer. Inspired by their common use in computer graphics applications, we test hierarchical k-d tree grids as an alternative for octree grids. On the other hand, we investigate which node subdivision-stopping criteria are optimal for constructing of hierarchical grids. We implemented a k-d tree grid in the 3D radiative transfer code SKIRT and compared it with the previously implemented octree grid. We also considered three different node subdivision-stopping criteria (based on mass, optical depth, and density gradient thresholds). Based on a small suite of test models, we compared the efficiency and accuracy of the different grids, according to various quality metrics. For a given set of requirements, the k-d tree grids only require half the number of cells of the corresponding octree. Moreover, for the same number of grid cells, the k-d tree is characterized by higher discretization accuracy. Concerning the subdivision stopping criteria, we find that an optical depth criterion is not a useful alternative to the more standard mass threshold, since the resulting grids show a poor accuracy. Both criteria can be combined; however, in the optimal combination, for which we provide a simple approximate recipe, this can lead to a 20% reduction in the number of cells needed to reach a certain grid quality. An additional density gradient threshold criterion can be added that solves the problem of poorly resolving sharp edges and... (abridged).Comment: 10 pages, 6 figures. Accepted for publication in A&

    Large and small-scale structures and the dust energy balance problem in spiral galaxies

    Get PDF
    The interstellar dust content in galaxies can be traced in extinction at optical wavelengths, or in emission in the far-infrared. Several studies have found that radiative transfer models that successfully explain the optical extinction in edge-on spiral galaxies generally underestimate the observed FIR/submm fluxes by a factor of about three. In order to investigate this so-called dust energy balance problem, we use two Milky Way-like galaxies produced by high-resolution hydrodynamical simulations. We create mock optical edge-on views of these simulated galaxies (using the radiative transfer code SKIRT), and we then fit the parameters of a basic spiral galaxy model to these images (using the fitting code FitSKIRT). The basic model includes smooth axisymmetric distributions along a S\'ersic bulge and exponential disc for the stars, and a second exponential disc for the dust. We find that the dust mass recovered by the fitted models is about three times smaller than the known dust mass of the hydrodynamical input models. This factor is in agreement with previous energy balance studies of real edge-on spiral galaxies. On the other hand, fitting the same basic model to less complex input models (e.g. a smooth exponential disc with a spiral perturbation or with random clumps), does recover the dust mass of the input model almost perfectly. Thus it seems that the complex asymmetries and the inhomogeneous structure of real and hydrodynamically simulated galaxies are a lot more efficient at hiding dust than the rather contrived geometries in typical quasi-analytical models. This effect may help explain the discrepancy between the dust emission predicted by radiative transfer models and the observed emission in energy balance studies for edge-on spiral galaxies.Comment: 9 pages, 5 figures, accepted for publication in A&
    • …
    corecore