22 research outputs found

    Infrared observations of the dust coma

    Get PDF
    The main infrared observational results were briefly reviewed at the start of this session. The new results are summarized. All of these results have yet to be synthesized into a self-consistent picture of the dust grain composition, dust production history, outburst mechanisms, and composition of the nucleus. The workshop discussion was helpful in pointing out problems faced by theorists, such as data quality, the lack of the proper theory for computing the scattering and emission of irregular particles, and in some cases the lack of optical constants of realistic materials. It is expected that the gross spectral and dynamical properties of Halley's Comet can be understood in time, even if the details of the observations and the theoretical calculations continue to vex us in the future

    The dust coma of Comet Austin (1989c1)

    Get PDF
    Thermal-infrared (10 and 20 micron) images of Comet Austin were obtained on UT 30.6 Apr., 1.8, 2.8, and 3.6 May 1990. The NASA-Marshall Space Flight Center 20 pixel bolometer array at the NASA 3 meter Infrared Telescope Facility in Hawaii was used. The 10.8 micron (FWHM = 5.3 microns) maps were obtained with maximum dimensions of 113 arcsec (57,500 km) in RA and 45 arcsec (23,000 km) in declination, with a pixel size of 4.2 x 4.2 arcsec. A smaller, 45 x 18 arcsec, map was obtained in the 19.2 micron (FWHM = 5.2 microns) bandpass. At the time of these observations Comet Austin's heliocentric and geocentric distances were 0.7 and 0.5 AU respectively. The peak flux density (within the brightest pixel) was 23 + or - 2 Janskys for the first three dates and only marginally lower the last day; i.e., within the observational uncertainties no evidence was found for day-to-day variability like that observed in Comet Halley. A dynamical analysis of the morphology of the extended dust emission is used to constrain the size distribution and production rate of the dust particles. The results of this analysis are compared with similar studies carried out on comets P/Giacobini-Zinner, P/Brorsen-Metcalf, P/Halley, P/Tempel 2, and Wilson (1987)

    Airborne 20-65 micron spectrophotometry of Comet Halley

    Get PDF
    Observations of Comet Halley with a grating spectrometer on board the Kuiper Airborne Observatory on four nights in Dec. 1985 to Apr. 1986 are reported. Low resolution 20 to 65 micrometer spectra of the nucleus with a 40 arcsec FWHM beam was obtained on 17 Dec. 1985, and on 15 and 17 Apr. 1986. On 20 Dec. 1985, only a 20 to 35 micrometer spectrum was obtained. Most of the data have been discussed in a paper where the continuum was dealt with. In that paper, models were fit to the continuum that showed that more micron sized particles of grain similar to amorphous carbon were needed to fit the spectrum than were allowed by the Vega SP-2 mass distribution, or that a fraction of the grains had to be made out of a material whose absorption efficiency fell steeper than lambda sup -1 for lambda greater than 20 micrometers. Spectra was also presented taken at several points on the coma on 15 Apr. which showed that the overall shape to the spectrum is the same in the coma. Tabulated values of the data and calibration curves are available. The spectral features are discussed

    Some 5-13 micrometer airborne observations of Comet Wilson 1986l: Preliminary results

    Get PDF
    Comet Wilson was observed from the Kuiper Airborne Observatory approximately 23.6 and 25.7 Apr. 1987, UT (approx. 3 to 5 days after perihelion) using the NASA-Ames Faint Object Grating Spectrometer. Spectrophotometric data were observed with a 21 inch aperture between 5 and 13 micrometer and with a spectral resolution of 50 to 100. Spectra of the inner coma and nucleus reveal a fairly smooth continuum with little evidence of silicate emission. The 5 to 8 micrometer color temperature of the comet was 300 + or - 15 K, approx. 15 percent higher than the equilibrium blackbody temperature. All three spectra of the nucleus show a new emission feature at approx. 12.25 micrometer approx. two channels (.22 micrometer) wide. Visual and photographic observations made during the time of these observations showed a broad faint, possible two component tail. No outburst activity was observed

    Nuclear spectra of comet 28P Neujmin

    Get PDF
    We present visible and near-infrared spectra of the nucleus of comet 28P/Neujmin 1, obtained in 2001, 2002, and 2003, while it had no detectable coma. The spectra show no strong features in this wavelength range, which prevented the identification of specific compounds on the surface of comet 28P. We found evidence for spectral variability, as our 2002 near-infrared spectrum has a significantly steeper slope than those obtained in 2001 and 2003. We compare the spectra of 28P with published spectra of other comet nuclei, with primitive asteroids and with meteorites. At near-infrared wavelengths, all the comet nuclei show spectra with red\u27\u27 slopes and the 2002 spectrum of comet 28P is among the reddest even when compared with Trojan asteroids. Three of the four properly observed Jupiter-family comets have significantly redder spectral slopes in the near-infrared than the one Halley-type comet in this sample. We found reasonably good matches among Trojan asteroids to the albedo and spectral shape of comet 28P. Such similarities are consistent with an analogous formation and evolutionary environment for Trojan asteroids and Jupiter-family comets, as proposed by Morbidelli and coworkers. One CI meteorite showed a partial fit to our 2003 near-infrared spectrum of comet 28P; however, no close spectral matches to our target were found among chondritic meteorites

    Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST) Final Report

    Get PDF
    The Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST) was a two-month effort, chartered by NASA, to provide timely inputs for mission requirement formulation in support of the Asteroid Redirect Robotic Mission (ARRM) Requirements Closure Technical Interchange Meeting held December 15-16, 2015, to assist in developing an initial list of potential mission investigations, and to provide input on potential hosted payloads and partnerships. The FAST explored several aspects of potential science benefits and knowledge gain from the ARM. Expertise from the science, engineering, and technology communities was represented in exploring lines of inquiry related to key characteristics of the ARRM reference target asteroid (2008 EV5) for engineering design purposes. Specific areas of interest included target origin, spatial distribution and size of boulders, surface geotechnical properties, boulder physical properties, and considerations for boulder handling, crew safety, and containment. In order to increase knowledge gain potential from the mission, opportunities for partnerships and accompanying payloads were also investigated. Potential investigations could be conducted to reduce mission risks and increase knowledge return in the areas of science, planetary defense, asteroid resources and in-situ resource utilization, and capability and technology demonstrations. This report represents the FAST"TM"s final product for the ARM
    corecore