16 research outputs found
A measurement of the CMB temperature power spectrum and constraints on cosmology from the SPT-3G 2018 TT/TE/EE Data Set
We present a sample-variance-limited measurement of the temperature power spectrum () of the cosmic microwave background (CMB) using observations of a field made by SPT-3G in 2018. We report multifrequency power spectrum measurements at 95, 150, and 220GHz covering the angular multipole range . We combine this measurement with the published polarization power spectrum measurements from the 2018 observing season and update their associated covariance matrix to complete the SPT-3G 2018 data set. This is the first analysis to present cosmological constraints from SPT , , and power spectrum measurements jointly. We blind the cosmological results and subject the data set to a series of consistency tests at the power spectrum and parameter level. We find excellent agreement between frequencies and spectrum types and our results are robust to the modeling of astrophysical foregrounds. We report results for CDM and a series of extensions, drawing on the following parameters: the amplitude of the gravitational lensing effect on primary power spectra , the effective number of neutrino species , the primordial helium abundance , and the baryon clumping factor due to primordial magnetic fields . We find that the SPT-3G 2018 data are well fit by CDM with a probability-to-exceed of . For CDM, we constrain the expansion rate today to and the combined structure growth parameter to . The SPT-based results are effectively independent of Planck, and the cosmological parameter constraints from either data set are within of each other. (abridged)..
A Measurement of the CMB Temperature Power Spectrum and Constraints on Cosmology from the SPT-3G 2018 TT/TE/EE Data Set
We present a sample-variance-limited measurement of the temperature power
spectrum () of the cosmic microwave background (CMB) using observations of
a field made by SPT-3G in 2018. We report
multifrequency power spectrum measurements at 95, 150, and 220GHz covering the
angular multipole range . We combine this
measurement with the published polarization power spectrum measurements from
the 2018 observing season and update their associated covariance matrix to
complete the SPT-3G 2018 data set. This is the first analysis to
present cosmological constraints from SPT , , and power spectrum
measurements jointly. We blind the cosmological results and subject the data
set to a series of consistency tests at the power spectrum and parameter level.
We find excellent agreement between frequencies and spectrum types and our
results are robust to the modeling of astrophysical foregrounds. We report
results for CDM and a series of extensions, drawing on the following
parameters: the amplitude of the gravitational lensing effect on primary power
spectra , the effective number of neutrino species
, the primordial helium abundance , and the
baryon clumping factor due to primordial magnetic fields . We find that the
SPT-3G 2018 data are well fit by CDM with a
probability-to-exceed of . For CDM, we constrain the expansion
rate today to and the
combined structure growth parameter to . The SPT-based
results are effectively independent of Planck, and the cosmological parameter
constraints from either data set are within of each other.
(abridged)Comment: 35 Pages, 17 Figures, 11 Table
Flaring Stars in a Non-targeted mm-wave Survey with SPT-3G
We present a flare star catalog from four years of non-targeted
millimeter-wave survey data from the South Pole Telescope (SPT). The data were
taken with the SPT-3G camera and cover a 1500-square-degree region of the sky
from to in right ascension and
to in declination. This region was observed on a
nearly daily cadence from 2019-2022 and chosen to avoid the plane of the
galaxy. A short-duration transient search of this survey yields 111 flaring
events from 66 stars, increasing the number of both flaring events and detected
flare stars by an order of magnitude from the previous SPT-3G data release. We
provide cross-matching to Gaia DR3, as well as matches to X-ray point sources
found in the second ROSAT all-sky survey. We have detected flaring stars across
the main sequence, from early-type A stars to M dwarfs, as well as a large
population of evolved stars. These stars are mostly nearby, spanning 10 to 1000
parsecs in distance. Most of the flare spectral indices are constant or gently
rising as a function of frequency at 95/150/220 GHz. The timescale of these
events can range from minutes to hours, and the peak luminosities
range from to erg s in the SPT-3G frequency bands
A Measurement of Gravitational Lensing of the Cosmic Microwave Background Using SPT-3G 2018 Data
We present a measurement of gravitational lensing over 1500 deg of the
Southern sky using SPT-3G temperature data at 95 and 150 GHz taken in 2018. The
lensing amplitude relative to a fiducial Planck 2018 CDM cosmology is
found to be , excluding instrumental and astrophysical
systematic uncertainties. We conduct extensive systematic and null tests to
check the robustness of the lensing measurements, and report a minimum-variance
combined lensing power spectrum over angular multipoles of , which
we use to constrain cosmological models. When analyzed alone and jointly with
primary cosmic microwave background (CMB) spectra within the CDM
model, our lensing amplitude measurements are consistent with measurements from
SPT-SZ, SPTpol, ACT, and Planck. Incorporating loose priors on the baryon
density and other parameters including uncertainties on a foreground bias
template, we obtain a constraint on using the SPT-3G 2018 lensing data alone, where
is a common measure of the amplitude of structure today and
is the matter density parameter. Combining SPT-3G 2018 lensing
measurements with baryon acoustic oscillation (BAO) data, we derive parameter
constraints of , , and Hubble constant
km s Mpc. Using CMB anisotropy and lensing measurements from
SPT-3G only, we provide independent constraints on the spatial curvature of
(95% C.L.) and the dark energy density
of (68% C.L.). When combining SPT-3G
lensing data with SPT-3G CMB anisotropy and BAO data, we find an upper limit on
the sum of the neutrino masses of eV (95% C.L.)
Testing the ÎCDM cosmological model with forthcoming measurements of the cosmic microwave background with SPT-3G
We forecast constraints on cosmological parameters enabled by three surveys conducted with SPT-3G, the third-generation camera on the South Pole Telescope. The surveys cover separate regions of 1500, 2650, and 6000 deg2 to different depths, in total observing 25% of the sky. These regions will be measured to white noise levels of roughly 2.5, 9, and 12ÎŒK -armin, respectively, in cosmic microwave background (CMB) temperature units at 150 GHz by the end of 2024. The survey also includes measurements at 95 and 220 GHz, which have noise levels a factor of âŒ1.2 and 3.5 times higher than 150 GHz, respectively, with each band having a polarization noise level âŒ2 times higher than the temperature noise. We use a novel approach to obtain the covariance matrices for jointly and optimally estimated gravitational lensing potential band powers and unlensed CMB temperature and polarization band powers. We demonstrate the ability to test the ÎCDM model via the consistency of cosmological parameters constrained independently from SPT-3G and Planck data, and consider the improvement in constraints on ÎCDM extension parameters from a joint analysis of SPT-3G and Planck data. The ÎCDM cosmological parameters are typically constrained with uncertainties up to âŒ2 times smaller with SPT-3G data, compared to Planck, with the two data sets measuring significantly different angular scales and polarization levels, providing additional tests of the standard cosmological model
Flaring stars in a nontargeted millimeter-wave survey with SPT-3G
We present a flare star catalog from 4 yr of nontargeted millimeter-wave survey data from the South Pole Telescope (SPT). The data were taken with the SPT-3G camera and cover a 1500 deg2 region of the sky from 20h40m0s to 3h20m0s in right ascension and from â42° to â70° in declination. This region was observed on a nearly daily cadence from 2019 to 2022 and chosen to avoid the plane of the galaxy. A short-duration transient search of this survey yields 111 flaring events from 66 stars, increasing the number of both flaring events and detected flare stars by an order of magnitude from the previous SPT-3G data release. We provide cross-matching to Gaia DR3, as well as matches to X-ray point sources found in the second ROSAT all-sky survey. We have detected flaring stars across the main sequence, from early-type A stars to M dwarfs, as well as a large population of evolved stars. These stars are mostly nearby, spanning 10â1000 pc in distance. Most of the flare spectral indices are constant or gently rising as a function of frequency at 95/150/220 GHz. The timescale of these events can range from minutes to hours, and the peak Îœ L Îœ luminosities range from 1027 to 1031 erg sâ1 in the SPT-3G frequency bands
Mass calibration of DES Year-3 clusters via SPT-3G CMB cluster lensing
We measure the stacked lensing signal in the direction of galaxy clusters in the Dark Energy Survey Year 3 (DES Y3) redMaPPer sample, using cosmic microwave background (CMB) temperature data from SPT-3G, the third-generation CMB camera on the South Pole Telescope (SPT). Here, we estimate the lensing signal using temperature maps constructed from the initial 2 years of data from the SPT-3G 'Main' survey, covering 1500 deg2 of the Southern sky. We then use this lensing signal as a proxy for the mean cluster mass of the DES sample. The thermal Sunyaev-Zel'dovich (tSZ) signal, which can contaminate the lensing signal if not addressed, is isolated and removed from the data before obtaining the mass measurement. In this work, we employ three versions of the redMaPPer catalogue: a Flux-Limited sample containing 8865 clusters, a Volume-Limited sample with 5391 clusters, and a Volume&Redshift-Limited sample with 4450 clusters. For the three samples, we detect the CMB lensing signal at a significance of 12.4Ï, 10.5Ï and 10.2Ï and find the mean cluster masses to be M 200m = 1.66±0.13 [stat.]± 0.03 [sys.], 1.97±0.18 [stat.]± 0.05 [sys.], and 2.11±0.20 [stat.]± 0.05 [sys.]Ă1014 Mâ, respectively. This is a factor of ⌠2 improvement relative to the precision of measurements with previous generations of SPT surveys and the most constraining cluster mass measurements using CMB cluster lensing to date. Overall, we find no significant tensions between our results and masses given by redMaPPer mass-richness scaling relations of previous works, which were calibrated using CMB cluster lensing, optical weak lensing, and velocity dispersion measurements from various combinations of DES, SDSS and Planck data. We then divide our sample into 3 redshift and 3 richness bins, finding no significant discrepancies with optical weak-lensing calibrated masses in these bins. We forecast a 5.7% constraint on the mean cluster mass of the DES Y3 sample with the complete SPT-3G surveys when using both temperature and polarization data and including an additional ⌠1400 deg2 of observations from the 'Extended' SPT-3G survey
Accurate cosmic microwave background covariance matrices: Exact calculation and approximations
Context. A reliable estimation of cosmological parameters from pseudo-power spectrum estimators requires accurate covariance matrices.
Aims. We focus on the analytical calculation of covariance matrices. We consider the case of observations of the cosmic microwave background (CMB) in temperature and polarization on a small footprint such as in the South Pole Telescope third-generation (SPT-3G) experiment, which observes 4% of the sky. Power spectra evaluated on small footprints are expected to have strong correlations between modes, and these need to be accurately modeled.
Methods. We present for the first time an algorithm that allows an efficient (but computationally expensive) exact calculation of analytic covariance matrices. Using it as our reference, we tested the accuracy of existing fast approximations of the covariance matrix. Furthermore, we propose a new approximation that is designed to be more precise. Finally, we derived the covariance matrices for mask-corrected power spectra estimated by the PolSpic
Searching for axion-like time-dependent cosmic birefringence with SPT-3G
Ultralight axion-like particles (ALPs) are compelling dark matter candidates because of their potential to resolve small-scale discrepancies between CDM predictions and cosmological observations. Axion-photon coupling induces a polarization rotation in linearly polarized photons traveling through an ALP field; thus, as the local ALP dark matter field oscillates in time, distant static polarized sources will appear to oscillate with a frequency proportional to the ALP mass. We use observations of the cosmic microwave background from SPT-3G, the current receiver on the South Pole Telescope, to set upper limits on the value of the axion-photon coupling constant over the approximate mass range eV, corresponding to oscillation periods from 12 hours to 100 days. For periods between 1 and 100 days (), where the limit is approximately constant, we set a median 95% C.L. upper limit on the amplitude of on-sky polarization rotation of 0.071 deg. Assuming that dark matter comprises a single ALP species with a local dark matter density of , this corresponds to . These new limits represent an improvement over the previous strongest limits set using the same effect by a factor of ~3.8
A Measurement of the CMB Temperature Power Spectrum and Constraints on Cosmology from the SPT-3G 2018 TT/TE/EE Data Set
We present a sample-variance-limited measurement of the temperature power spectrum () of the cosmic microwave background (CMB) using observations of a field made by SPT-3G in 2018. We report multifrequency power spectrum measurements at 95, 150, and 220GHz covering the angular multipole range . We combine this measurement with the published polarization power spectrum measurements from the 2018 observing season and update their associated covariance matrix to complete the SPT-3G 2018 data set. This is the first analysis to present cosmological constraints from SPT , , and power spectrum measurements jointly. We blind the cosmological results and subject the data set to a series of consistency tests at the power spectrum and parameter level. We find excellent agreement between frequencies and spectrum types and our results are robust to the modeling of astrophysical foregrounds. We report results for CDM and a series of extensions, drawing on the following parameters: the amplitude of the gravitational lensing effect on primary power spectra , the effective number of neutrino species , the primordial helium abundance , and the baryon clumping factor due to primordial magnetic fields . We find that the SPT-3G 2018 data are well fit by CDM with a probability-to-exceed of . For CDM, we constrain the expansion rate today to and the combined structure growth parameter to . The SPT-based results are effectively independent of Planck, and the cosmological parameter constraints from either data set are within of each other. (abridged