271 research outputs found

    Description of a nanobody-based competitive immunoassay to detect tsetse fly exposure

    Get PDF
    Background : Tsetse flies are the main vectors of human and animal African trypanosomes. The Tsal proteins in tsetse fly saliva were previously identified as suitable biomarkers of bite exposure. A new competitive assay was conceived based on nanobody (Nb) technology to ameliorate the detection of anti-Tsal antibodies in mammalian hosts. Methodology/Principal Findings : A camelid-derived Nb library was generated against the Glossina morsitans morsitans sialome and exploited to select Tsal specific Nbs. One of the three identified Nb families (family III, TsalNb-05 and TsalNb-11) was found suitable for anti-Tsal antibody detection in a competitive ELISA format. The competitive ELISA was able to detect exposure to a broad range of tsetse species (G. morsitans morsitans, G. pallidipes, G. palpalis gambiensis and G. fuscipes) and did not cross-react with the other hematophagous insects (Stomoxys calcitrans and Tabanus yao). Using a collection of plasmas from tsetse-exposed pigs, the new test characteristics were compared with those of the previously described G. m. moristans and rTsal1 indirect ELISAs, revealing equally good specificities (> 95%) and positive predictive values (> 98%) but higher negative predictive values and hence increased sensitivity (> 95%) and accuracy (> 95%). Conclusion/Significance : We have developed a highly accurate Nb-based competitive immunoassay to detect specific anti-Tsal antibodies induced by various tsetse fly species in a range of hosts. We propose that this competitive assay provides a simple serological indicator of tsetse fly presence without the requirement of test adaptation to the vertebrate host species. In addition, the use of monoclonal Nbs for antibody detection is innovative and could be applied to other tsetse fly salivary biomarkers in order to achieve a multi-target immunoprofiling of hosts. In addition, this approach could be broadened to other pathogenic organisms for which accurate serological diagnosis remains a bottleneck

    Serological responses and biomarker evaluation in mice and pigs exposed to tsetse fly bites

    Get PDF
    Background: Tsetse flies are obligate blood-feeding insects that transmit African trypanosomes responsible for human sleeping sickness and nagana in livestock. The tsetse salivary proteome contains a highly immunogenic family of the endonuclease-like Tsal proteins. In this study, a recombinant version of Tsal1 (rTsal1) was evaluated in an indirect ELISA to quantify the contact with total Glossina morsitans morsitans saliva, and thus the tsetse fly bite exposure. Methodology/Principal Findings: Mice and pigs were experimentally exposed to different G. m. morsitans exposure regimens, followed by a long-term follow-up of the specific antibody responses against total tsetse fly saliva and rTsal1. In mice, a single tsetse fly bite was sufficient to induce detectable IgG antibody responses with an estimated half-life of 36-40 days. Specific antibody responses could be detected for more than a year after initial exposure, and a single bite was sufficient to boost anti-saliva immunity. Also, plasmas collected from tsetse-exposed pigs displayed increased anti-rTsal1 and anti-saliva IgG levels that correlated with the exposure intensity. A strong correlation between the detection of anti-rTsal1 and anti-saliva responses was recorded. The ELISA test performance and intra-laboratory repeatability was adequate in the two tested animal models. Cross-reactivity of the mouse IgGs induced by exposure to different Glossina species (G. m. morsitans, G. pallidipes, G. palpalis gambiensis and G. fuscipes) and other hematophagous insects (Stomoxys calcitrans and Tabanus yao) was evaluated. Conclusion: This study illustrates the potential use of rTsal1 from G. m. morsitans as a sensitive biomarker of exposure to a broad range of Glossina species. We propose that the detection of anti-rTsal1 IgGs could be a promising serological indicator of tsetse fly presence that will be a valuable tool to monitor the impact of tsetse control efforts on the African continent

    Delivery of a functional anti-trypanosome Nanobody in different tsetse fly tissues via a bacterial symbiont, Sodalis glossinidius

    Get PDF
    Background: Sodalis glossinidius, a vertically transmitted microbial symbiont of the tsetse fly, is currently considered as a potential delivery system for anti-trypanosomal components that reduce or eliminate the capability of the tsetse fly host to transmit parasitic trypanosomes, an approach also known as paratransgenesis. An essential step in developing paratransgenic tsetse is the stable colonization of adult flies and their progeny with recombinant Sodalis bacteria, expressing trypanocidal effector molecules in tissues where the parasite resides. Results: In this study, Sodalis was tested for its ability to deliver functional anti-trypanosome nanobodies (Nbs) in Glossina morsitans morsitans. We characterized the in vitro and in vivo stability of recombinant Sodalis (recSodalis) expressing a potent trypanolytic nanobody, i.e. Nb_An46. We show that recSodalis is competitive with WT Sodalis in in vivo conditions and that tsetse flies transiently cleared of their endogenous WT Sodalis population can be successfully repopulated with recSodalis at high densities. In addition, vertical transmission to the offspring was observed. Finally, we demonstrated that recSodalis expressed significant levels (ng range) of functional Nb_An46 in different tsetse fly tissues, including the midgut where an important developmental stage of the trypanosome parasite occurs. Conclusions: We demonstrated the proof-of-concept that the Sodalis symbiont can be genetically engineered to express and release significant amounts of functional anti-trypanosome Nbs in different tissues of the tsetse fly. The application of this innovative concept of using pathogen-targeting nanobodies delivered by insect symbiotic bacteria could be extended to other vector-pathogen systems

    Paternal transmission of a secondary symbiont during mating in the viviparous tsetse fly

    Get PDF
    Sodalis glossinidius, a maternally inherited secondary symbiont of the tsetse fly, is a bacterium in the early/intermediate state of the transition toward symbiosis, representing an important model for investigating establishment and evolution of insect-bacteria symbiosis. The absence of phylogenetic congruence in tsetse-Sodalis coevolution and the existence of Sodalis genotypic diversity in field flies are suggestive for a horizontal transmission route. However, to date no natural mechanism for the horizontal transfer of this symbiont has been identified. Using novel methodologies for the stable fluorescent-labeling and introduction of modified Sodalis in tsetse flies, we unambiguously show that male-borne Sodalis is 1) horizontally transferred to females during mating and 2) subsequently vertically transmitted to the progeny, that is, paternal transmission. This mixed mode of transmission has major consequences regarding Sodalis' genome evolution as it can lead to coinfections creating opportunities for lateral gene transfer which in turn could affect the interaction with the tsetse host

    Expression and extracellular release of a functional anti-trypanosome Nanobody® in Sodalis glossinidius, a bacterial symbiont of the tsetse fly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Sodalis glossinidius</it>, a gram-negative bacterial endosymbiont of the tsetse fly, has been proposed as a potential <it>in vivo </it>drug delivery vehicle to control trypanosome parasite development in the fly, an approach known as paratransgenesis. Despite this interest of <it>S. glossinidius </it>as a paratransgenic platform organism in tsetse flies, few potential effector molecules have been identified so far and to date none of these molecules have been successfully expressed in this bacterium.</p> <p>Results</p> <p>In this study, <it>S. glossinidius </it>was transformed to express a single domain antibody, (Nanobody<sup>®</sup>) Nb_An33, that efficiently targets conserved cryptic epitopes of the variant surface glycoprotein (VSG) of the parasite <it>Trypanosoma brucei</it>. Next, we analyzed the capability of two predicted secretion signals to direct the extracellular delivery of significant levels of active Nb_An33. We show that the pelB leader peptide was successful in directing the export of fully functional Nb_An33 to the periplasm of <it>S. glossinidius </it>resulting in significant levels of extracellular release. Finally, <it>S. glossinidius </it>expressing pelBNb_An33 exhibited no significant reduction in terms of fitness, determined by <it>in vitro </it>growth kinetics, compared to the wild-type strain.</p> <p>Conclusions</p> <p>These data are the first demonstration of the expression and extracellular release of functional trypanosome-interfering Nanobodies<sup>® </sup>in <it>S. glossinidius</it>. Furthermore, <it>Sodalis </it>strains that efficiently released the effector protein were not affected in their growth, suggesting that they may be competitive with endogenous microbiota in the midgut environment of the tsetse fly. Collectively, these data reinforce the notion for the potential of <it>S. glossinidius </it>to be developed into a paratransgenic platform organism.</p

    Identification of a Tsetse Fly Salivary Protein with Dual Inhibitory Action on Human Platelet Aggregation

    Get PDF
    BACKGROUND: Tsetse flies (Glossina sp.), the African trypanosome vectors, rely on anti-hemostatic compounds for efficient blood feeding. Despite their medical importance, very few salivary proteins have been characterized and functionally annotated. METHODOLOGY/PRINCIPAL FINDINGS: Here we report on the functional characterisation of a 5'nucleotidase-related (5'Nuc) saliva protein of the tsetse fly Glossina morsitans morsitans. This protein is encoded by a 1668 bp cDNA corresponding at the genomic level with a single-copy 4 kb gene that is exclusively transcribed in the tsetse salivary gland tissue. The encoded 5'Nuc protein is a soluble 65 kDa glycosylated compound of tsetse saliva with a dual anti-hemostatic action that relies on its combined apyrase activity and fibrinogen receptor (GPIIb/IIIa) antagonistic properties. Experimental evidence is based on the biochemical and functional characterization of recombinant protein and on the successful silencing of the 5'nuc translation in the salivary gland by RNA interference (RNAi). Refolding of a 5'Nuc/SUMO-fusion protein yielded an active apyrase enzyme with K(m) and V(max) values of 43+/-4 microM and 684+/-49 nmol Pi/min xmg for ATPase and 49+/-11 microM and 177+/-37 nmol Pi/min xmg for the ADPase activity. In addition, recombinant 5'Nuc was found to bind to GPIIb/IIIa with an apparent K(D) of 92+/-25 nM. Consistent with these features, 5'Nuc potently inhibited ADP-induced thrombocyte aggregation and even caused disaggregation of ADP-triggered human platelets. The importance of 5'Nuc for the tsetse fly hematophagy was further illustrated by specific RNAi that reduced the anti-thrombotic activities in saliva by approximately 50% resulting in a disturbed blood feeding process. CONCLUSIONS/SIGNIFICANCE: These data show that this 5'nucleotidase-related apyrase exhibits GPIIb/IIIa antagonistic properties and represents a key thromboregulatory compound of tsetse fly saliva

    MIF contributes to Trypanosoma brucei associated immunopathogenicity development

    Get PDF
    African trypanosomiasis is a chronic debilitating disease affecting the health and economic well-being of many people in developing countries. The pathogenicity associated with this disease involves a persistent inflammatory response, whereby M1-type myeloid cells, including Ly6C(high) inflammatory monocytes, are centrally implicated. A comparative gene analysis between trypanosusceptible and trypanotolerant animals identified MIF (macrophage migrating inhibitory factor) as an important pathogenic candidate molecule. Using MIF-deficient mice and anti-MIF antibody treated mice, we show that MIF mediates the pathogenic inflammatory immune response and increases the recruitment of inflammatory monocytes and neutrophils to contribute to liver injury in Trypanosoma brucei infected mice. Moreover, neutrophil-derived MIF contributed more significantly than monocyte-derived MIF to increased pathogenic liver TNF production and liver injury during trypanosome infection. MIF deficient animals also featured limited anemia, coinciding with increased iron bio-availability, improved erythropoiesis and reduced RBC clearance during the chronic phase of infection. Our data suggest that MIF promotes the most prominent pathological features of experimental trypanosome infections (i.e. anemia and liver injury), and prompt considering MIF as a novel target for treatment of trypanosomiasis-associated immunopathogenicity

    An unbiased immunization strategy results in the identification of enolase as a potential marker for nanobody-based detection of Trypanosoma evansi

    Get PDF
    Trypanosoma evansi is a widely spread parasite that causes the debilitating disease “surra” in several types of ungulates. This severely challenges livestock rearing and heavily weighs on the socio-economic development in the affected areas, which include countries on five continents. Active case finding requires a sensitive and specific diagnostic test. In this paper, we describe the application of an unbiased immunization strategy to identify potential biomarkers for Nanobody (Nb)-based detection of T. evansi infections. Alpaca immunization with soluble lysates from different T. evansi strains followed by panning against T. evansi secretome resulted in the selection of a single Nb (Nb11). By combining Nb11-mediated immuno-capturing with mass spectrometry, the T. evansi target antigen was identified as the glycolytic enzyme enolase. Four additional anti-enolase binders were subsequently generated by immunizing another alpaca with the recombinant target enzyme. Together with Nb11, these binders were evaluated for their potential use in a heterologous sandwich detection format. Three Nb pairs were identified as candidates for the further development of an antigen-based assay for Nb-mediated diagnosis of T. evansi infection

    Street Society 2017

    Get PDF
    Heat map showing the affected salivary gland transcripts in midgut only T. brucei-infected flies. The heat maps were obtained by plotting the mean of normalized read counts (scaled by row and hierarchical clustered) in the three infection conditions. Colors display z-scores from −2 (low expression: dark blue) to 2 (high expression: red) for normalized gene expression values. (PDF 190 kb

    3-nitroimidazo[1,2-b]pyridazine as a novel scaffold for antiparasitics with sub-nanomolar anti-Giardia lamblia activity.

    Get PDF
    As there is a continuous need for novel anti-infectives, the present study aimed to fuse two modes of action into a novel 3-nitroimidazo[1,2-b]pyridazine scaffold to improve antiparasitic efficacy. For this purpose, we combined known structural elements of phosphodiesterase inhibitors, a target recently proposed for Trypanosoma brucei and Giardia lamblia, with a nitroimidazole scaffold to generate nitrosative stress. The compounds were evaluated in vitro against a panel of protozoal parasites, namely Giardia lamblia, Trypanosoma brucei, T. cruzi, Leishmania infantum and Plasmodium falciparum and for cytotoxicity on MRC-5 cells. Interestingly, selective sub-nanomolar activity was obtained against G. lamblia, and by testing several analogues with and without the nitro group, it was shown that the presence of a nitro group, but not PDE inhibition, is responsible for the low IC50 values of these novel compounds. Adding the favourable drug-like properties (low molecular weight, cLogP (1.2-4.1) and low polar surface area), the key compounds from the 3-nitroimidazo[1,2-b]pyridazine series can be considered as valuable hits for further anti-giardiasis drug exploration and development
    corecore