190 research outputs found

    Nucleotide and phylogenetic analyses of the Chlamydia trachomatis ompA gene indicates it is a hotspot for mutation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serovars of the human pathogen <it>Chlamydia trachomatis </it>occupy one of three specific tissue niches. Genomic analyses indicate that the serovars have a phylogeny congruent with their pathobiology and have an average substitution rate of less than one nucleotide per kilobase. In contrast, the gene that determines serovar specificity, <it>ompA</it>, has a phylogenetic association that is not congruent with tissue tropism and has a degree of nucleotide variability much higher than other genomic loci. The <it>ompA </it>gene encodes the major surface-exposed antigenic determinant, and the observed nucleotide diversity at the <it>ompA </it>locus is thought to be due to recombination and host immune selection pressure. The possible contribution of a localized increase in mutation rate, however, has not been investigated.</p> <p>Results</p> <p>Nucleotide diversity and phylogenetic relationships of the five constant and four variable domains of the <it>ompA </it>gene, as well as several loci surrounding <it>ompA</it>, were examined for each serovar. The loci flanking the <it>ompA </it>gene demonstrated that nucleotide diversity increased monotonically as <it>ompA </it>is approached and that their gene trees are not congruent with either <it>ompA </it>or tissue tropism. The variable domains of the <it>ompA </it>gene had a very high level of non-synonymous change, which is expected as these regions encode the surface-exposed epitopes and are under positive selection. However, the synonymous changes are clustered in the variable regions compared to the constant domains; if hitchhiking were to account for the increase in synonymous changes, these substitutions should be more evenly distributed across the gene. Recombination also cannot entirely account for this increase as the phylogenetic relationships of the constant and variable domains are congruent with each other.</p> <p>Conclusions</p> <p>The high number of synonymous substitutions observed within the variable domains of <it>ompA </it>appears to be due to an increased mutation rate within this region of the genome, whereas the increase in nucleotide substitution rate and the lack of phylogenetic congruence in the regions flanking <it>ompA </it>are characteristic motifs of gene conversion. Together, the increased mutation rate in the <it>ompA </it>gene, in conjunction with gene conversion and positive selection, results in a high degree of variability that promotes host immune evasion.</p

    Comparative Expression Profiling of the Chlamydia trachomatis pmp Gene Family for Clinical and Reference Strains

    Get PDF
    Chlamydia trachomatis, an obligate intracellular pathogen, is a leading worldwide cause of ocular and urogenital diseases. Advances have been made in our understanding of the nine-member polymorphic membrane protein (Pmp) gene (pmp) family of C. trachomatis. However, there is only limited information on their biologic role, especially for biological variants (biovar) and clinical strains.We evaluated expression for pmps throughout development for reference strains E/Bour and L2/434, representing different biovars, and for clinical E and L2 strains. Immunoreactivity of patient sera to recombinant (r)Pmps was also determined. All pmps were expressed at two hours. pmpA had the lowest expression but was up-regulated at 12 h for all strains, indicating involvement in reticulate body development. For pmpD, expression peaked at 36 h. Additionally, 57.7% of sera from infected and 0% from uninfected adolescents were reactive to rPmpD (p = 0.001), suggesting a role in immunogenicity. pmpF had the highest expression levels for all clinical strains and L2/434 with differential expression of the pmpFE operon for the same strains. Sera were nonreactive to rPmpF despite immunoreactivity to rMOMP and rPmpD, suggesting that PmpF is not associated with humoral immune responses. pmpFE sequences for clinical strains were identical to those of the respective reference strains. We identified the putative pmpFE promoter, which was, surprisingly, 100% conserved for all strains. Analyses of ribosomal binding sites, RNase E, and hairpin structures suggested complex regulatory mechanism(s) for this >6 Kb operon.The dissimilar expression of the same pmp for different C. trachomatis strains may explain different strain-specific needs and phenotypic distinctions. This is further supported by the differential immunoreactivity to rPmpD and rPmpF of sera from patients infected with different strains. Furthermore, clinical E strains did not correlate with the E reference strain at the gene expression level, reinforcing the need for expansive studies of clinical strains

    Chlamydia trachomatis ompA Variants in Trachoma: What Do They Tell Us?

    Get PDF
    Trachoma is an important cause of blindness resulting from transmission of the bacterium Chlamydia trachomatis. One way to understand better how this infection is transmitted and how the human immune system controls it is to study the strains of bacteria associated with infection. Comparing strains before and after treatment might help us learn if someone has a new infection or the same one as before. Identifying differences between disease-causing strains should help us understand how infection leads to disease and how the human host defences work. We chose to study variation in the chlamydial gene ompA because it determines the protein MOMP, one of the leading candidates for inclusion in a vaccine to prevent trachoma. If immunity to MOMP is important in natural trachoma infections, we would expect to find evidence of this in the way the strains varied. We did not find this, but instead found that two common strains seemed to cause different types of disease. Although their MOMPs were very slightly different, this did not really explain the differences. We conclude that methods of typing strains going beyond the ompA gene will be needed to help us understand the interaction between Chlamydia and its human host

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2

    Chlamydia trachomatis antigens in enteroendocrine cells and macrophages of the small bowel in patients with severe irritable bowel syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammation and immune activation have repeatedly been suggested as pathogentic factors in irritable bowel syndrome (IBS). The driving force for immune activation in IBS remains unknown. The aim of our study was to find out if the obligate intracellular pathogen <it>Chlamydia </it>could be involved in the pathogenesis of IBS.</p> <p>Methods</p> <p>We studied 65 patients (61 females) with IBS and 42 (29 females) healthy controls in which IBS had been excluded. Full thickness biopsies from the jejunum and mucosa biopsies from the duodenum and the jejunum were stained with a monoclonal antibody to <it>Chlamydia </it>lipopolysaccharide (LPS) and species-specific monoclonal antibodies to <it>C. trachomatis </it>and <it>C. pneumoniae</it>. We used polyclonal antibodies to chromogranin A, CD68, CD11c, and CD117 to identify enteroendocrine cells, macrophages, dendritic, and mast cells, respectively.</p> <p>Results</p> <p><it>Chlamydia </it>LPS was present in 89% of patients with IBS, but in only 14% of healthy controls (p < 0.001) and 79% of LPS-positive biopsies were also positive for <it>C. trachomatis </it>major outer membrane protein (MOMP). Staining for <it>C. pneumoniae </it>was negative in both patients and controls. <it>Chlamydia </it>LPS was detected in enteroendocrine cells of the mucosa in 90% of positive biopsies and in subepithelial macrophages in 69% of biopsies. Biopsies taken at different time points in 19 patients revealed persistence of <it>Chlamydia </it>LPS up to 11 years. The odds ratio for the association of <it>Chlamydia </it>LPS with presence of IBS (43.1; 95% CI: 13.2-140.7) is much higher than any previously described pathogenetic marker in IBS.</p> <p>Conclusions</p> <p>We found <it>C. trachomatis </it>antigens in enteroendocrine cells and macrophages in the small bowel mucosa of patients with IBS. Further studies are required to clarify if the presence of such antigens has a role in the pathogenesis of IBS.</p

    The Conserved Tarp Actin Binding Domain Is Important for Chlamydial Invasion

    Get PDF
    The translocated actin recruiting phosphoprotein (Tarp) is conserved among all pathogenic chlamydial species. Previous reports identified single C. trachomatis Tarp actin binding and proline rich domains required for Tarp mediated actin nucleation. A peptide antiserum specific for the Tarp actin binding domain was generated and inhibited actin polymerization in vitro and C. trachomatis entry in vivo, indicating an essential role for Tarp in chlamydial pathogenesis. Sequence analysis of Tarp orthologs from additional chlamydial species and C. trachomatis serovars indicated multiple putative actin binding sites. In order to determine whether the identified actin binding domains are functionally conserved, GST-Tarp fusions from multiple chlamydial species were examined for their ability to bind and nucleate actin. Chlamydial Tarps harbored variable numbers of actin binding sites and promoted actin nucleation as determined by in vitro polymerization assays. Our findings indicate that Tarp mediated actin binding and nucleation is a conserved feature among diverse chlamydial species and this function plays a critical role in bacterial invasion of host cells

    The Natural History of Trachoma Infection and Disease in a Gambian Cohort with Frequent Follow-Up

    Get PDF
    Trachoma is an infectious disease of the eye that causes blindness in many of the poorest parts of the world. In this paper, we use a novel statistical approach to estimate the characteristics of this disease among people living in The Gambia who were examined every 2 weeks over a 6-month period. We found that the typical duration of infection with Chlamydia trachomatis and of clinically active disease were significantly longer than previously estimated. We tested different hypotheses about the natural history of trachoma that explain the relationship between infection and disease observed in the field. We also confirmed that disease lasts significantly longer among young children under 5 years old compared with older children and adults, even after accounting for high rates of re-infection in this age group, consistent with the development of immunity with age. The long duration of infection, especially among younger children, contributes to the persistence and gradual return of trachoma after community-wide treatment with azithromycin. This implies the need for high treatment coverage if infection is to be eliminated from a community, even where the return of infection after treatment is seen to be slow

    Cationic Liposomes Formulated with Synthetic Mycobacterial Cordfactor (CAF01): A Versatile Adjuvant for Vaccines with Different Immunological Requirements

    Get PDF
    It is now emerging that for vaccines against a range of diseases including influenza, malaria and HIV, the induction of a humoral response is insufficient and a substantial complementary cell-mediated immune response is necessary for adequate protection. Furthermore, for some diseases such as tuberculosis, a cellular response seems to be the sole effector mechanism required for protection. The development of new adjuvants capable of inducing highly complex immune responses with strong antigen-specific T-cell responses in addition to antibodies is therefore urgently needed. (cell-mediated/humoral) and malaria (humoral) immunization with CAF01-based vaccines elicited significant protective immunity against challenge.CAF01 is potentially a suitable adjuvant for a wide range of diseases including targets requiring both CMI and humoral immune responses for protection
    corecore